Delete bsroformer/bs_roformer
Browse files
bsroformer/bs_roformer/__init__.py
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
from models.bs_roformer.bs_roformer import BSRoformer
|
| 2 |
-
from models.bs_roformer.mel_band_roformer import MelBandRoformer
|
|
|
|
|
|
|
|
|
bsroformer/bs_roformer/attend.py
DELETED
|
@@ -1,120 +0,0 @@
|
|
| 1 |
-
from functools import wraps
|
| 2 |
-
from packaging import version
|
| 3 |
-
from collections import namedtuple
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
from torch import nn, einsum
|
| 7 |
-
import torch.nn.functional as F
|
| 8 |
-
|
| 9 |
-
from einops import rearrange, reduce
|
| 10 |
-
|
| 11 |
-
# constants
|
| 12 |
-
|
| 13 |
-
FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
|
| 14 |
-
|
| 15 |
-
# helpers
|
| 16 |
-
|
| 17 |
-
def exists(val):
|
| 18 |
-
return val is not None
|
| 19 |
-
|
| 20 |
-
def default(v, d):
|
| 21 |
-
return v if exists(v) else d
|
| 22 |
-
|
| 23 |
-
def once(fn):
|
| 24 |
-
called = False
|
| 25 |
-
@wraps(fn)
|
| 26 |
-
def inner(x):
|
| 27 |
-
nonlocal called
|
| 28 |
-
if called:
|
| 29 |
-
return
|
| 30 |
-
called = True
|
| 31 |
-
return fn(x)
|
| 32 |
-
return inner
|
| 33 |
-
|
| 34 |
-
print_once = once(print)
|
| 35 |
-
|
| 36 |
-
# main class
|
| 37 |
-
|
| 38 |
-
class Attend(nn.Module):
|
| 39 |
-
def __init__(
|
| 40 |
-
self,
|
| 41 |
-
dropout = 0.,
|
| 42 |
-
flash = False,
|
| 43 |
-
scale = None
|
| 44 |
-
):
|
| 45 |
-
super().__init__()
|
| 46 |
-
self.scale = scale
|
| 47 |
-
self.dropout = dropout
|
| 48 |
-
self.attn_dropout = nn.Dropout(dropout)
|
| 49 |
-
|
| 50 |
-
self.flash = flash
|
| 51 |
-
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
| 52 |
-
|
| 53 |
-
# determine efficient attention configs for cuda and cpu
|
| 54 |
-
|
| 55 |
-
self.cpu_config = FlashAttentionConfig(True, True, True)
|
| 56 |
-
self.cuda_config = None
|
| 57 |
-
|
| 58 |
-
if not torch.cuda.is_available() or not flash:
|
| 59 |
-
return
|
| 60 |
-
|
| 61 |
-
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
| 62 |
-
|
| 63 |
-
if device_properties.major == 8 and device_properties.minor == 0:
|
| 64 |
-
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
|
| 65 |
-
self.cuda_config = FlashAttentionConfig(True, False, False)
|
| 66 |
-
else:
|
| 67 |
-
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
|
| 68 |
-
self.cuda_config = FlashAttentionConfig(False, True, True)
|
| 69 |
-
|
| 70 |
-
def flash_attn(self, q, k, v):
|
| 71 |
-
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
| 72 |
-
|
| 73 |
-
if exists(self.scale):
|
| 74 |
-
default_scale = q.shape[-1] ** -0.5
|
| 75 |
-
q = q * (self.scale / default_scale)
|
| 76 |
-
|
| 77 |
-
# Check if there is a compatible device for flash attention
|
| 78 |
-
|
| 79 |
-
config = self.cuda_config if is_cuda else self.cpu_config
|
| 80 |
-
|
| 81 |
-
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale
|
| 82 |
-
|
| 83 |
-
with torch.backends.cuda.sdp_kernel(**config._asdict()):
|
| 84 |
-
out = F.scaled_dot_product_attention(
|
| 85 |
-
q, k, v,
|
| 86 |
-
dropout_p = self.dropout if self.training else 0.
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
return out
|
| 90 |
-
|
| 91 |
-
def forward(self, q, k, v):
|
| 92 |
-
"""
|
| 93 |
-
einstein notation
|
| 94 |
-
b - batch
|
| 95 |
-
h - heads
|
| 96 |
-
n, i, j - sequence length (base sequence length, source, target)
|
| 97 |
-
d - feature dimension
|
| 98 |
-
"""
|
| 99 |
-
|
| 100 |
-
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device
|
| 101 |
-
|
| 102 |
-
scale = default(self.scale, q.shape[-1] ** -0.5)
|
| 103 |
-
|
| 104 |
-
if self.flash:
|
| 105 |
-
return self.flash_attn(q, k, v)
|
| 106 |
-
|
| 107 |
-
# similarity
|
| 108 |
-
|
| 109 |
-
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale
|
| 110 |
-
|
| 111 |
-
# attention
|
| 112 |
-
|
| 113 |
-
attn = sim.softmax(dim=-1)
|
| 114 |
-
attn = self.attn_dropout(attn)
|
| 115 |
-
|
| 116 |
-
# aggregate values
|
| 117 |
-
|
| 118 |
-
out = einsum(f"b h i j, b h j d -> b h i d", attn, v)
|
| 119 |
-
|
| 120 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bsroformer/bs_roformer/bs_roformer.py
DELETED
|
@@ -1,577 +0,0 @@
|
|
| 1 |
-
from functools import partial
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
from torch import nn, einsum, Tensor
|
| 5 |
-
from torch.nn import Module, ModuleList
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
-
|
| 8 |
-
from models.bs_roformer.attend import Attend
|
| 9 |
-
|
| 10 |
-
from beartype.typing import Tuple, Optional, List, Callable
|
| 11 |
-
from beartype import beartype
|
| 12 |
-
|
| 13 |
-
from rotary_embedding_torch import RotaryEmbedding
|
| 14 |
-
|
| 15 |
-
from einops import rearrange, pack, unpack
|
| 16 |
-
from einops.layers.torch import Rearrange
|
| 17 |
-
|
| 18 |
-
# helper functions
|
| 19 |
-
|
| 20 |
-
def exists(val):
|
| 21 |
-
return val is not None
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def default(v, d):
|
| 25 |
-
return v if exists(v) else d
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def pack_one(t, pattern):
|
| 29 |
-
return pack([t], pattern)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def unpack_one(t, ps, pattern):
|
| 33 |
-
return unpack(t, ps, pattern)[0]
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# norm
|
| 37 |
-
|
| 38 |
-
def l2norm(t):
|
| 39 |
-
return F.normalize(t, dim = -1, p = 2)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class RMSNorm(Module):
|
| 43 |
-
def __init__(self, dim):
|
| 44 |
-
super().__init__()
|
| 45 |
-
self.scale = dim ** 0.5
|
| 46 |
-
self.gamma = nn.Parameter(torch.ones(dim))
|
| 47 |
-
|
| 48 |
-
def forward(self, x):
|
| 49 |
-
return F.normalize(x, dim=-1) * self.scale * self.gamma
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# attention
|
| 53 |
-
|
| 54 |
-
class FeedForward(Module):
|
| 55 |
-
def __init__(
|
| 56 |
-
self,
|
| 57 |
-
dim,
|
| 58 |
-
mult=4,
|
| 59 |
-
dropout=0.
|
| 60 |
-
):
|
| 61 |
-
super().__init__()
|
| 62 |
-
dim_inner = int(dim * mult)
|
| 63 |
-
self.net = nn.Sequential(
|
| 64 |
-
RMSNorm(dim),
|
| 65 |
-
nn.Linear(dim, dim_inner),
|
| 66 |
-
nn.GELU(),
|
| 67 |
-
nn.Dropout(dropout),
|
| 68 |
-
nn.Linear(dim_inner, dim),
|
| 69 |
-
nn.Dropout(dropout)
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
def forward(self, x):
|
| 73 |
-
return self.net(x)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
class Attention(Module):
|
| 77 |
-
def __init__(
|
| 78 |
-
self,
|
| 79 |
-
dim,
|
| 80 |
-
heads=8,
|
| 81 |
-
dim_head=64,
|
| 82 |
-
dropout=0.,
|
| 83 |
-
rotary_embed=None,
|
| 84 |
-
flash=True
|
| 85 |
-
):
|
| 86 |
-
super().__init__()
|
| 87 |
-
self.heads = heads
|
| 88 |
-
self.scale = dim_head ** -0.5
|
| 89 |
-
dim_inner = heads * dim_head
|
| 90 |
-
|
| 91 |
-
self.rotary_embed = rotary_embed
|
| 92 |
-
|
| 93 |
-
self.attend = Attend(flash=flash, dropout=dropout)
|
| 94 |
-
|
| 95 |
-
self.norm = RMSNorm(dim)
|
| 96 |
-
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
|
| 97 |
-
|
| 98 |
-
self.to_gates = nn.Linear(dim, heads)
|
| 99 |
-
|
| 100 |
-
self.to_out = nn.Sequential(
|
| 101 |
-
nn.Linear(dim_inner, dim, bias=False),
|
| 102 |
-
nn.Dropout(dropout)
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
def forward(self, x):
|
| 106 |
-
x = self.norm(x)
|
| 107 |
-
|
| 108 |
-
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
| 109 |
-
|
| 110 |
-
if exists(self.rotary_embed):
|
| 111 |
-
q = self.rotary_embed.rotate_queries_or_keys(q)
|
| 112 |
-
k = self.rotary_embed.rotate_queries_or_keys(k)
|
| 113 |
-
|
| 114 |
-
out = self.attend(q, k, v)
|
| 115 |
-
|
| 116 |
-
gates = self.to_gates(x)
|
| 117 |
-
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
| 118 |
-
|
| 119 |
-
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 120 |
-
return self.to_out(out)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
class LinearAttention(Module):
|
| 124 |
-
"""
|
| 125 |
-
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
|
| 126 |
-
"""
|
| 127 |
-
|
| 128 |
-
@beartype
|
| 129 |
-
def __init__(
|
| 130 |
-
self,
|
| 131 |
-
*,
|
| 132 |
-
dim,
|
| 133 |
-
dim_head=32,
|
| 134 |
-
heads=8,
|
| 135 |
-
scale=8,
|
| 136 |
-
flash=False,
|
| 137 |
-
dropout=0.
|
| 138 |
-
):
|
| 139 |
-
super().__init__()
|
| 140 |
-
dim_inner = dim_head * heads
|
| 141 |
-
self.norm = RMSNorm(dim)
|
| 142 |
-
|
| 143 |
-
self.to_qkv = nn.Sequential(
|
| 144 |
-
nn.Linear(dim, dim_inner * 3, bias=False),
|
| 145 |
-
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
| 149 |
-
|
| 150 |
-
self.attend = Attend(
|
| 151 |
-
scale=scale,
|
| 152 |
-
dropout=dropout,
|
| 153 |
-
flash=flash
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
self.to_out = nn.Sequential(
|
| 157 |
-
Rearrange('b h d n -> b n (h d)'),
|
| 158 |
-
nn.Linear(dim_inner, dim, bias=False)
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
def forward(
|
| 162 |
-
self,
|
| 163 |
-
x
|
| 164 |
-
):
|
| 165 |
-
x = self.norm(x)
|
| 166 |
-
|
| 167 |
-
q, k, v = self.to_qkv(x)
|
| 168 |
-
|
| 169 |
-
q, k = map(l2norm, (q, k))
|
| 170 |
-
q = q * self.temperature.exp()
|
| 171 |
-
|
| 172 |
-
out = self.attend(q, k, v)
|
| 173 |
-
|
| 174 |
-
return self.to_out(out)
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
class Transformer(Module):
|
| 178 |
-
def __init__(
|
| 179 |
-
self,
|
| 180 |
-
*,
|
| 181 |
-
dim,
|
| 182 |
-
depth,
|
| 183 |
-
dim_head=64,
|
| 184 |
-
heads=8,
|
| 185 |
-
attn_dropout=0.,
|
| 186 |
-
ff_dropout=0.,
|
| 187 |
-
ff_mult=4,
|
| 188 |
-
norm_output=True,
|
| 189 |
-
rotary_embed=None,
|
| 190 |
-
flash_attn=True,
|
| 191 |
-
linear_attn=False
|
| 192 |
-
):
|
| 193 |
-
super().__init__()
|
| 194 |
-
self.layers = ModuleList([])
|
| 195 |
-
|
| 196 |
-
for _ in range(depth):
|
| 197 |
-
if linear_attn:
|
| 198 |
-
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
| 199 |
-
else:
|
| 200 |
-
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
| 201 |
-
rotary_embed=rotary_embed, flash=flash_attn)
|
| 202 |
-
|
| 203 |
-
self.layers.append(ModuleList([
|
| 204 |
-
attn,
|
| 205 |
-
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
| 206 |
-
]))
|
| 207 |
-
|
| 208 |
-
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
| 209 |
-
|
| 210 |
-
def forward(self, x):
|
| 211 |
-
|
| 212 |
-
for attn, ff in self.layers:
|
| 213 |
-
x = attn(x) + x
|
| 214 |
-
x = ff(x) + x
|
| 215 |
-
|
| 216 |
-
return self.norm(x)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
# bandsplit module
|
| 220 |
-
|
| 221 |
-
class BandSplit(Module):
|
| 222 |
-
@beartype
|
| 223 |
-
def __init__(
|
| 224 |
-
self,
|
| 225 |
-
dim,
|
| 226 |
-
dim_inputs: Tuple[int, ...]
|
| 227 |
-
):
|
| 228 |
-
super().__init__()
|
| 229 |
-
self.dim_inputs = dim_inputs
|
| 230 |
-
self.to_features = ModuleList([])
|
| 231 |
-
|
| 232 |
-
for dim_in in dim_inputs:
|
| 233 |
-
net = nn.Sequential(
|
| 234 |
-
RMSNorm(dim_in),
|
| 235 |
-
nn.Linear(dim_in, dim)
|
| 236 |
-
)
|
| 237 |
-
|
| 238 |
-
self.to_features.append(net)
|
| 239 |
-
|
| 240 |
-
def forward(self, x):
|
| 241 |
-
x = x.split(self.dim_inputs, dim=-1)
|
| 242 |
-
|
| 243 |
-
outs = []
|
| 244 |
-
for split_input, to_feature in zip(x, self.to_features):
|
| 245 |
-
split_output = to_feature(split_input)
|
| 246 |
-
outs.append(split_output)
|
| 247 |
-
|
| 248 |
-
return torch.stack(outs, dim=-2)
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
def MLP(
|
| 252 |
-
dim_in,
|
| 253 |
-
dim_out,
|
| 254 |
-
dim_hidden=None,
|
| 255 |
-
depth=1,
|
| 256 |
-
activation=nn.Tanh
|
| 257 |
-
):
|
| 258 |
-
dim_hidden = default(dim_hidden, dim_in)
|
| 259 |
-
|
| 260 |
-
net = []
|
| 261 |
-
dims = (dim_in, *((dim_hidden,) * (depth - 1)), dim_out)
|
| 262 |
-
|
| 263 |
-
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
| 264 |
-
is_last = ind == (len(dims) - 2)
|
| 265 |
-
|
| 266 |
-
net.append(nn.Linear(layer_dim_in, layer_dim_out))
|
| 267 |
-
|
| 268 |
-
if is_last:
|
| 269 |
-
continue
|
| 270 |
-
|
| 271 |
-
net.append(activation())
|
| 272 |
-
|
| 273 |
-
return nn.Sequential(*net)
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
class MaskEstimator(Module):
|
| 277 |
-
@beartype
|
| 278 |
-
def __init__(
|
| 279 |
-
self,
|
| 280 |
-
dim,
|
| 281 |
-
dim_inputs: Tuple[int, ...],
|
| 282 |
-
depth,
|
| 283 |
-
mlp_expansion_factor=4
|
| 284 |
-
):
|
| 285 |
-
super().__init__()
|
| 286 |
-
self.dim_inputs = dim_inputs
|
| 287 |
-
self.to_freqs = ModuleList([])
|
| 288 |
-
dim_hidden = dim * mlp_expansion_factor
|
| 289 |
-
|
| 290 |
-
for dim_in in dim_inputs:
|
| 291 |
-
net = []
|
| 292 |
-
|
| 293 |
-
mlp = nn.Sequential(
|
| 294 |
-
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
| 295 |
-
nn.GLU(dim=-1)
|
| 296 |
-
)
|
| 297 |
-
|
| 298 |
-
self.to_freqs.append(mlp)
|
| 299 |
-
|
| 300 |
-
def forward(self, x):
|
| 301 |
-
x = x.unbind(dim=-2)
|
| 302 |
-
|
| 303 |
-
outs = []
|
| 304 |
-
|
| 305 |
-
for band_features, mlp in zip(x, self.to_freqs):
|
| 306 |
-
freq_out = mlp(band_features)
|
| 307 |
-
outs.append(freq_out)
|
| 308 |
-
|
| 309 |
-
return torch.cat(outs, dim=-1)
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
# main class
|
| 313 |
-
|
| 314 |
-
DEFAULT_FREQS_PER_BANDS = (
|
| 315 |
-
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
| 316 |
-
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
| 317 |
-
2, 2, 2, 2,
|
| 318 |
-
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
| 319 |
-
12, 12, 12, 12, 12, 12, 12, 12,
|
| 320 |
-
24, 24, 24, 24, 24, 24, 24, 24,
|
| 321 |
-
48, 48, 48, 48, 48, 48, 48, 48,
|
| 322 |
-
128, 129,
|
| 323 |
-
)
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
class BSRoformer(Module):
|
| 327 |
-
|
| 328 |
-
@beartype
|
| 329 |
-
def __init__(
|
| 330 |
-
self,
|
| 331 |
-
dim,
|
| 332 |
-
*,
|
| 333 |
-
depth,
|
| 334 |
-
stereo=False,
|
| 335 |
-
num_stems=1,
|
| 336 |
-
time_transformer_depth=2,
|
| 337 |
-
freq_transformer_depth=2,
|
| 338 |
-
linear_transformer_depth=0,
|
| 339 |
-
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
| 340 |
-
# in the paper, they divide into ~60 bands, test with 1 for starters
|
| 341 |
-
dim_head=64,
|
| 342 |
-
heads=8,
|
| 343 |
-
attn_dropout=0.,
|
| 344 |
-
ff_dropout=0.,
|
| 345 |
-
flash_attn=True,
|
| 346 |
-
dim_freqs_in=1025,
|
| 347 |
-
stft_n_fft=2048,
|
| 348 |
-
stft_hop_length=512,
|
| 349 |
-
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
| 350 |
-
stft_win_length=2048,
|
| 351 |
-
stft_normalized=False,
|
| 352 |
-
stft_window_fn: Optional[Callable] = None,
|
| 353 |
-
mask_estimator_depth=2,
|
| 354 |
-
multi_stft_resolution_loss_weight=1.,
|
| 355 |
-
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
| 356 |
-
multi_stft_hop_size=147,
|
| 357 |
-
multi_stft_normalized=False,
|
| 358 |
-
multi_stft_window_fn: Callable = torch.hann_window
|
| 359 |
-
):
|
| 360 |
-
super().__init__()
|
| 361 |
-
|
| 362 |
-
self.stereo = stereo
|
| 363 |
-
self.audio_channels = 2 if stereo else 1
|
| 364 |
-
self.num_stems = num_stems
|
| 365 |
-
|
| 366 |
-
self.layers = ModuleList([])
|
| 367 |
-
|
| 368 |
-
transformer_kwargs = dict(
|
| 369 |
-
dim=dim,
|
| 370 |
-
heads=heads,
|
| 371 |
-
dim_head=dim_head,
|
| 372 |
-
attn_dropout=attn_dropout,
|
| 373 |
-
ff_dropout=ff_dropout,
|
| 374 |
-
flash_attn=flash_attn,
|
| 375 |
-
norm_output=False
|
| 376 |
-
)
|
| 377 |
-
|
| 378 |
-
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
| 379 |
-
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
|
| 380 |
-
|
| 381 |
-
for _ in range(depth):
|
| 382 |
-
tran_modules = []
|
| 383 |
-
if linear_transformer_depth > 0:
|
| 384 |
-
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
|
| 385 |
-
tran_modules.append(
|
| 386 |
-
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
|
| 387 |
-
)
|
| 388 |
-
tran_modules.append(
|
| 389 |
-
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
|
| 390 |
-
)
|
| 391 |
-
self.layers.append(nn.ModuleList(tran_modules))
|
| 392 |
-
|
| 393 |
-
self.final_norm = RMSNorm(dim)
|
| 394 |
-
|
| 395 |
-
self.stft_kwargs = dict(
|
| 396 |
-
n_fft=stft_n_fft,
|
| 397 |
-
hop_length=stft_hop_length,
|
| 398 |
-
win_length=stft_win_length,
|
| 399 |
-
normalized=stft_normalized
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
| 403 |
-
|
| 404 |
-
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, return_complex=True).shape[1]
|
| 405 |
-
|
| 406 |
-
assert len(freqs_per_bands) > 1
|
| 407 |
-
assert sum(
|
| 408 |
-
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}'
|
| 409 |
-
|
| 410 |
-
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands)
|
| 411 |
-
|
| 412 |
-
self.band_split = BandSplit(
|
| 413 |
-
dim=dim,
|
| 414 |
-
dim_inputs=freqs_per_bands_with_complex
|
| 415 |
-
)
|
| 416 |
-
|
| 417 |
-
self.mask_estimators = nn.ModuleList([])
|
| 418 |
-
|
| 419 |
-
for _ in range(num_stems):
|
| 420 |
-
mask_estimator = MaskEstimator(
|
| 421 |
-
dim=dim,
|
| 422 |
-
dim_inputs=freqs_per_bands_with_complex,
|
| 423 |
-
depth=mask_estimator_depth
|
| 424 |
-
)
|
| 425 |
-
|
| 426 |
-
self.mask_estimators.append(mask_estimator)
|
| 427 |
-
|
| 428 |
-
# for the multi-resolution stft loss
|
| 429 |
-
|
| 430 |
-
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
|
| 431 |
-
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
|
| 432 |
-
self.multi_stft_n_fft = stft_n_fft
|
| 433 |
-
self.multi_stft_window_fn = multi_stft_window_fn
|
| 434 |
-
|
| 435 |
-
self.multi_stft_kwargs = dict(
|
| 436 |
-
hop_length=multi_stft_hop_size,
|
| 437 |
-
normalized=multi_stft_normalized
|
| 438 |
-
)
|
| 439 |
-
|
| 440 |
-
def forward(
|
| 441 |
-
self,
|
| 442 |
-
raw_audio,
|
| 443 |
-
target=None,
|
| 444 |
-
return_loss_breakdown=False
|
| 445 |
-
):
|
| 446 |
-
"""
|
| 447 |
-
einops
|
| 448 |
-
|
| 449 |
-
b - batch
|
| 450 |
-
f - freq
|
| 451 |
-
t - time
|
| 452 |
-
s - audio channel (1 for mono, 2 for stereo)
|
| 453 |
-
n - number of 'stems'
|
| 454 |
-
c - complex (2)
|
| 455 |
-
d - feature dimension
|
| 456 |
-
"""
|
| 457 |
-
|
| 458 |
-
device = raw_audio.device
|
| 459 |
-
|
| 460 |
-
if raw_audio.ndim == 2:
|
| 461 |
-
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
| 462 |
-
|
| 463 |
-
channels = raw_audio.shape[1]
|
| 464 |
-
assert (not self.stereo and channels == 1) or (
|
| 465 |
-
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
| 466 |
-
|
| 467 |
-
# to stft
|
| 468 |
-
|
| 469 |
-
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
| 470 |
-
|
| 471 |
-
stft_window = self.stft_window_fn(device=device)
|
| 472 |
-
|
| 473 |
-
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
| 474 |
-
stft_repr = torch.view_as_real(stft_repr)
|
| 475 |
-
|
| 476 |
-
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
| 477 |
-
stft_repr = rearrange(stft_repr,
|
| 478 |
-
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
| 479 |
-
|
| 480 |
-
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
|
| 481 |
-
|
| 482 |
-
x = self.band_split(x)
|
| 483 |
-
|
| 484 |
-
# axial / hierarchical attention
|
| 485 |
-
|
| 486 |
-
for transformer_block in self.layers:
|
| 487 |
-
|
| 488 |
-
if len(transformer_block) == 3:
|
| 489 |
-
linear_transformer, time_transformer, freq_transformer = transformer_block
|
| 490 |
-
|
| 491 |
-
x, ft_ps = pack([x], 'b * d')
|
| 492 |
-
x = linear_transformer(x)
|
| 493 |
-
x, = unpack(x, ft_ps, 'b * d')
|
| 494 |
-
else:
|
| 495 |
-
time_transformer, freq_transformer = transformer_block
|
| 496 |
-
|
| 497 |
-
x = rearrange(x, 'b t f d -> b f t d')
|
| 498 |
-
x, ps = pack([x], '* t d')
|
| 499 |
-
|
| 500 |
-
x = time_transformer(x)
|
| 501 |
-
|
| 502 |
-
x, = unpack(x, ps, '* t d')
|
| 503 |
-
x = rearrange(x, 'b f t d -> b t f d')
|
| 504 |
-
x, ps = pack([x], '* f d')
|
| 505 |
-
|
| 506 |
-
x = freq_transformer(x)
|
| 507 |
-
|
| 508 |
-
x, = unpack(x, ps, '* f d')
|
| 509 |
-
|
| 510 |
-
x = self.final_norm(x)
|
| 511 |
-
|
| 512 |
-
num_stems = len(self.mask_estimators)
|
| 513 |
-
|
| 514 |
-
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
| 515 |
-
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2)
|
| 516 |
-
|
| 517 |
-
# modulate frequency representation
|
| 518 |
-
|
| 519 |
-
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
| 520 |
-
|
| 521 |
-
# complex number multiplication
|
| 522 |
-
|
| 523 |
-
stft_repr = torch.view_as_complex(stft_repr)
|
| 524 |
-
mask = torch.view_as_complex(mask)
|
| 525 |
-
|
| 526 |
-
stft_repr = stft_repr * mask
|
| 527 |
-
|
| 528 |
-
# istft
|
| 529 |
-
|
| 530 |
-
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
| 531 |
-
|
| 532 |
-
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False)
|
| 533 |
-
|
| 534 |
-
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems)
|
| 535 |
-
|
| 536 |
-
if num_stems == 1:
|
| 537 |
-
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
| 538 |
-
|
| 539 |
-
# if a target is passed in, calculate loss for learning
|
| 540 |
-
|
| 541 |
-
if not exists(target):
|
| 542 |
-
return recon_audio
|
| 543 |
-
|
| 544 |
-
if self.num_stems > 1:
|
| 545 |
-
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
| 546 |
-
|
| 547 |
-
if target.ndim == 2:
|
| 548 |
-
target = rearrange(target, '... t -> ... 1 t')
|
| 549 |
-
|
| 550 |
-
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
| 551 |
-
|
| 552 |
-
loss = F.l1_loss(recon_audio, target)
|
| 553 |
-
|
| 554 |
-
multi_stft_resolution_loss = 0.
|
| 555 |
-
|
| 556 |
-
for window_size in self.multi_stft_resolutions_window_sizes:
|
| 557 |
-
res_stft_kwargs = dict(
|
| 558 |
-
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
|
| 559 |
-
win_length=window_size,
|
| 560 |
-
return_complex=True,
|
| 561 |
-
window=self.multi_stft_window_fn(window_size, device=device),
|
| 562 |
-
**self.multi_stft_kwargs,
|
| 563 |
-
)
|
| 564 |
-
|
| 565 |
-
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
| 566 |
-
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
| 567 |
-
|
| 568 |
-
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
| 569 |
-
|
| 570 |
-
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
|
| 571 |
-
|
| 572 |
-
total_loss = loss + weighted_multi_resolution_loss
|
| 573 |
-
|
| 574 |
-
if not return_loss_breakdown:
|
| 575 |
-
return total_loss
|
| 576 |
-
|
| 577 |
-
return total_loss, (loss, multi_stft_resolution_loss)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bsroformer/bs_roformer/mel_band_roformer.py
DELETED
|
@@ -1,637 +0,0 @@
|
|
| 1 |
-
from functools import partial
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
from torch import nn, einsum, Tensor
|
| 5 |
-
from torch.nn import Module, ModuleList
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
-
|
| 8 |
-
from models.bs_roformer.attend import Attend
|
| 9 |
-
|
| 10 |
-
from beartype.typing import Tuple, Optional, List, Callable
|
| 11 |
-
from beartype import beartype
|
| 12 |
-
|
| 13 |
-
from rotary_embedding_torch import RotaryEmbedding
|
| 14 |
-
|
| 15 |
-
from einops import rearrange, pack, unpack, reduce, repeat
|
| 16 |
-
from einops.layers.torch import Rearrange
|
| 17 |
-
|
| 18 |
-
from librosa import filters
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# helper functions
|
| 22 |
-
|
| 23 |
-
def exists(val):
|
| 24 |
-
return val is not None
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def default(v, d):
|
| 28 |
-
return v if exists(v) else d
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def pack_one(t, pattern):
|
| 32 |
-
return pack([t], pattern)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def unpack_one(t, ps, pattern):
|
| 36 |
-
return unpack(t, ps, pattern)[0]
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def pad_at_dim(t, pad, dim=-1, value=0.):
|
| 40 |
-
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
| 41 |
-
zeros = ((0, 0) * dims_from_right)
|
| 42 |
-
return F.pad(t, (*zeros, *pad), value=value)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def l2norm(t):
|
| 46 |
-
return F.normalize(t, dim=-1, p=2)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# norm
|
| 50 |
-
|
| 51 |
-
class RMSNorm(Module):
|
| 52 |
-
def __init__(self, dim):
|
| 53 |
-
super().__init__()
|
| 54 |
-
self.scale = dim ** 0.5
|
| 55 |
-
self.gamma = nn.Parameter(torch.ones(dim))
|
| 56 |
-
|
| 57 |
-
def forward(self, x):
|
| 58 |
-
return F.normalize(x, dim=-1) * self.scale * self.gamma
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
# attention
|
| 62 |
-
|
| 63 |
-
class FeedForward(Module):
|
| 64 |
-
def __init__(
|
| 65 |
-
self,
|
| 66 |
-
dim,
|
| 67 |
-
mult=4,
|
| 68 |
-
dropout=0.
|
| 69 |
-
):
|
| 70 |
-
super().__init__()
|
| 71 |
-
dim_inner = int(dim * mult)
|
| 72 |
-
self.net = nn.Sequential(
|
| 73 |
-
RMSNorm(dim),
|
| 74 |
-
nn.Linear(dim, dim_inner),
|
| 75 |
-
nn.GELU(),
|
| 76 |
-
nn.Dropout(dropout),
|
| 77 |
-
nn.Linear(dim_inner, dim),
|
| 78 |
-
nn.Dropout(dropout)
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
def forward(self, x):
|
| 82 |
-
return self.net(x)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
class Attention(Module):
|
| 86 |
-
def __init__(
|
| 87 |
-
self,
|
| 88 |
-
dim,
|
| 89 |
-
heads=8,
|
| 90 |
-
dim_head=64,
|
| 91 |
-
dropout=0.,
|
| 92 |
-
rotary_embed=None,
|
| 93 |
-
flash=True
|
| 94 |
-
):
|
| 95 |
-
super().__init__()
|
| 96 |
-
self.heads = heads
|
| 97 |
-
self.scale = dim_head ** -0.5
|
| 98 |
-
dim_inner = heads * dim_head
|
| 99 |
-
|
| 100 |
-
self.rotary_embed = rotary_embed
|
| 101 |
-
|
| 102 |
-
self.attend = Attend(flash=flash, dropout=dropout)
|
| 103 |
-
|
| 104 |
-
self.norm = RMSNorm(dim)
|
| 105 |
-
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
|
| 106 |
-
|
| 107 |
-
self.to_gates = nn.Linear(dim, heads)
|
| 108 |
-
|
| 109 |
-
self.to_out = nn.Sequential(
|
| 110 |
-
nn.Linear(dim_inner, dim, bias=False),
|
| 111 |
-
nn.Dropout(dropout)
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
def forward(self, x):
|
| 115 |
-
x = self.norm(x)
|
| 116 |
-
|
| 117 |
-
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
| 118 |
-
|
| 119 |
-
if exists(self.rotary_embed):
|
| 120 |
-
q = self.rotary_embed.rotate_queries_or_keys(q)
|
| 121 |
-
k = self.rotary_embed.rotate_queries_or_keys(k)
|
| 122 |
-
|
| 123 |
-
out = self.attend(q, k, v)
|
| 124 |
-
|
| 125 |
-
gates = self.to_gates(x)
|
| 126 |
-
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
| 127 |
-
|
| 128 |
-
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 129 |
-
return self.to_out(out)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
class LinearAttention(Module):
|
| 133 |
-
"""
|
| 134 |
-
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
|
| 135 |
-
"""
|
| 136 |
-
|
| 137 |
-
@beartype
|
| 138 |
-
def __init__(
|
| 139 |
-
self,
|
| 140 |
-
*,
|
| 141 |
-
dim,
|
| 142 |
-
dim_head=32,
|
| 143 |
-
heads=8,
|
| 144 |
-
scale=8,
|
| 145 |
-
flash=False,
|
| 146 |
-
dropout=0.
|
| 147 |
-
):
|
| 148 |
-
super().__init__()
|
| 149 |
-
dim_inner = dim_head * heads
|
| 150 |
-
self.norm = RMSNorm(dim)
|
| 151 |
-
|
| 152 |
-
self.to_qkv = nn.Sequential(
|
| 153 |
-
nn.Linear(dim, dim_inner * 3, bias=False),
|
| 154 |
-
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
| 158 |
-
|
| 159 |
-
self.attend = Attend(
|
| 160 |
-
scale=scale,
|
| 161 |
-
dropout=dropout,
|
| 162 |
-
flash=flash
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
self.to_out = nn.Sequential(
|
| 166 |
-
Rearrange('b h d n -> b n (h d)'),
|
| 167 |
-
nn.Linear(dim_inner, dim, bias=False)
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
def forward(
|
| 171 |
-
self,
|
| 172 |
-
x
|
| 173 |
-
):
|
| 174 |
-
x = self.norm(x)
|
| 175 |
-
|
| 176 |
-
q, k, v = self.to_qkv(x)
|
| 177 |
-
|
| 178 |
-
q, k = map(l2norm, (q, k))
|
| 179 |
-
q = q * self.temperature.exp()
|
| 180 |
-
|
| 181 |
-
out = self.attend(q, k, v)
|
| 182 |
-
|
| 183 |
-
return self.to_out(out)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
class Transformer(Module):
|
| 187 |
-
def __init__(
|
| 188 |
-
self,
|
| 189 |
-
*,
|
| 190 |
-
dim,
|
| 191 |
-
depth,
|
| 192 |
-
dim_head=64,
|
| 193 |
-
heads=8,
|
| 194 |
-
attn_dropout=0.,
|
| 195 |
-
ff_dropout=0.,
|
| 196 |
-
ff_mult=4,
|
| 197 |
-
norm_output=True,
|
| 198 |
-
rotary_embed=None,
|
| 199 |
-
flash_attn=True,
|
| 200 |
-
linear_attn=False
|
| 201 |
-
):
|
| 202 |
-
super().__init__()
|
| 203 |
-
self.layers = ModuleList([])
|
| 204 |
-
|
| 205 |
-
for _ in range(depth):
|
| 206 |
-
if linear_attn:
|
| 207 |
-
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
| 208 |
-
else:
|
| 209 |
-
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
| 210 |
-
rotary_embed=rotary_embed, flash=flash_attn)
|
| 211 |
-
|
| 212 |
-
self.layers.append(ModuleList([
|
| 213 |
-
attn,
|
| 214 |
-
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
| 215 |
-
]))
|
| 216 |
-
|
| 217 |
-
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
| 218 |
-
|
| 219 |
-
def forward(self, x):
|
| 220 |
-
|
| 221 |
-
for attn, ff in self.layers:
|
| 222 |
-
x = attn(x) + x
|
| 223 |
-
x = ff(x) + x
|
| 224 |
-
|
| 225 |
-
return self.norm(x)
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
# bandsplit module
|
| 229 |
-
|
| 230 |
-
class BandSplit(Module):
|
| 231 |
-
@beartype
|
| 232 |
-
def __init__(
|
| 233 |
-
self,
|
| 234 |
-
dim,
|
| 235 |
-
dim_inputs: Tuple[int, ...]
|
| 236 |
-
):
|
| 237 |
-
super().__init__()
|
| 238 |
-
self.dim_inputs = dim_inputs
|
| 239 |
-
self.to_features = ModuleList([])
|
| 240 |
-
|
| 241 |
-
for dim_in in dim_inputs:
|
| 242 |
-
net = nn.Sequential(
|
| 243 |
-
RMSNorm(dim_in),
|
| 244 |
-
nn.Linear(dim_in, dim)
|
| 245 |
-
)
|
| 246 |
-
|
| 247 |
-
self.to_features.append(net)
|
| 248 |
-
|
| 249 |
-
def forward(self, x):
|
| 250 |
-
x = x.split(self.dim_inputs, dim=-1)
|
| 251 |
-
|
| 252 |
-
outs = []
|
| 253 |
-
for split_input, to_feature in zip(x, self.to_features):
|
| 254 |
-
split_output = to_feature(split_input)
|
| 255 |
-
outs.append(split_output)
|
| 256 |
-
|
| 257 |
-
return torch.stack(outs, dim=-2)
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
def MLP(
|
| 261 |
-
dim_in,
|
| 262 |
-
dim_out,
|
| 263 |
-
dim_hidden=None,
|
| 264 |
-
depth=1,
|
| 265 |
-
activation=nn.Tanh
|
| 266 |
-
):
|
| 267 |
-
dim_hidden = default(dim_hidden, dim_in)
|
| 268 |
-
|
| 269 |
-
net = []
|
| 270 |
-
dims = (dim_in, *((dim_hidden,) * depth), dim_out)
|
| 271 |
-
|
| 272 |
-
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
| 273 |
-
is_last = ind == (len(dims) - 2)
|
| 274 |
-
|
| 275 |
-
net.append(nn.Linear(layer_dim_in, layer_dim_out))
|
| 276 |
-
|
| 277 |
-
if is_last:
|
| 278 |
-
continue
|
| 279 |
-
|
| 280 |
-
net.append(activation())
|
| 281 |
-
|
| 282 |
-
return nn.Sequential(*net)
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
class MaskEstimator(Module):
|
| 286 |
-
@beartype
|
| 287 |
-
def __init__(
|
| 288 |
-
self,
|
| 289 |
-
dim,
|
| 290 |
-
dim_inputs: Tuple[int, ...],
|
| 291 |
-
depth,
|
| 292 |
-
mlp_expansion_factor=4
|
| 293 |
-
):
|
| 294 |
-
super().__init__()
|
| 295 |
-
self.dim_inputs = dim_inputs
|
| 296 |
-
self.to_freqs = ModuleList([])
|
| 297 |
-
dim_hidden = dim * mlp_expansion_factor
|
| 298 |
-
|
| 299 |
-
for dim_in in dim_inputs:
|
| 300 |
-
net = []
|
| 301 |
-
|
| 302 |
-
mlp = nn.Sequential(
|
| 303 |
-
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
| 304 |
-
nn.GLU(dim=-1)
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
self.to_freqs.append(mlp)
|
| 308 |
-
|
| 309 |
-
def forward(self, x):
|
| 310 |
-
x = x.unbind(dim=-2)
|
| 311 |
-
|
| 312 |
-
outs = []
|
| 313 |
-
|
| 314 |
-
for band_features, mlp in zip(x, self.to_freqs):
|
| 315 |
-
freq_out = mlp(band_features)
|
| 316 |
-
outs.append(freq_out)
|
| 317 |
-
|
| 318 |
-
return torch.cat(outs, dim=-1)
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
# main class
|
| 322 |
-
|
| 323 |
-
class MelBandRoformer(Module):
|
| 324 |
-
|
| 325 |
-
@beartype
|
| 326 |
-
def __init__(
|
| 327 |
-
self,
|
| 328 |
-
dim,
|
| 329 |
-
*,
|
| 330 |
-
depth,
|
| 331 |
-
stereo=False,
|
| 332 |
-
num_stems=1,
|
| 333 |
-
time_transformer_depth=2,
|
| 334 |
-
freq_transformer_depth=2,
|
| 335 |
-
linear_transformer_depth=0,
|
| 336 |
-
num_bands=60,
|
| 337 |
-
dim_head=64,
|
| 338 |
-
heads=8,
|
| 339 |
-
attn_dropout=0.1,
|
| 340 |
-
ff_dropout=0.1,
|
| 341 |
-
flash_attn=True,
|
| 342 |
-
dim_freqs_in=1025,
|
| 343 |
-
sample_rate=44100, # needed for mel filter bank from librosa
|
| 344 |
-
stft_n_fft=2048,
|
| 345 |
-
stft_hop_length=512,
|
| 346 |
-
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
| 347 |
-
stft_win_length=2048,
|
| 348 |
-
stft_normalized=False,
|
| 349 |
-
stft_window_fn: Optional[Callable] = None,
|
| 350 |
-
mask_estimator_depth=1,
|
| 351 |
-
multi_stft_resolution_loss_weight=1.,
|
| 352 |
-
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
| 353 |
-
multi_stft_hop_size=147,
|
| 354 |
-
multi_stft_normalized=False,
|
| 355 |
-
multi_stft_window_fn: Callable = torch.hann_window,
|
| 356 |
-
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
| 357 |
-
):
|
| 358 |
-
super().__init__()
|
| 359 |
-
|
| 360 |
-
self.stereo = stereo
|
| 361 |
-
self.audio_channels = 2 if stereo else 1
|
| 362 |
-
self.num_stems = num_stems
|
| 363 |
-
|
| 364 |
-
self.layers = ModuleList([])
|
| 365 |
-
|
| 366 |
-
transformer_kwargs = dict(
|
| 367 |
-
dim=dim,
|
| 368 |
-
heads=heads,
|
| 369 |
-
dim_head=dim_head,
|
| 370 |
-
attn_dropout=attn_dropout,
|
| 371 |
-
ff_dropout=ff_dropout,
|
| 372 |
-
flash_attn=flash_attn
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
| 376 |
-
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
|
| 377 |
-
|
| 378 |
-
for _ in range(depth):
|
| 379 |
-
tran_modules = []
|
| 380 |
-
if linear_transformer_depth > 0:
|
| 381 |
-
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
|
| 382 |
-
tran_modules.append(
|
| 383 |
-
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
|
| 384 |
-
)
|
| 385 |
-
tran_modules.append(
|
| 386 |
-
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
|
| 387 |
-
)
|
| 388 |
-
self.layers.append(nn.ModuleList(tran_modules))
|
| 389 |
-
|
| 390 |
-
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
| 391 |
-
|
| 392 |
-
self.stft_kwargs = dict(
|
| 393 |
-
n_fft=stft_n_fft,
|
| 394 |
-
hop_length=stft_hop_length,
|
| 395 |
-
win_length=stft_win_length,
|
| 396 |
-
normalized=stft_normalized
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, return_complex=True).shape[1]
|
| 400 |
-
|
| 401 |
-
# create mel filter bank
|
| 402 |
-
# with librosa.filters.mel as in section 2 of paper
|
| 403 |
-
|
| 404 |
-
mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands)
|
| 405 |
-
|
| 406 |
-
mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy)
|
| 407 |
-
|
| 408 |
-
# for some reason, it doesn't include the first freq? just force a value for now
|
| 409 |
-
|
| 410 |
-
mel_filter_bank[0][0] = 1.
|
| 411 |
-
|
| 412 |
-
# In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
|
| 413 |
-
# so let's force a positive value
|
| 414 |
-
|
| 415 |
-
mel_filter_bank[-1, -1] = 1.
|
| 416 |
-
|
| 417 |
-
# binary as in paper (then estimated masks are averaged for overlapping regions)
|
| 418 |
-
|
| 419 |
-
freqs_per_band = mel_filter_bank > 0
|
| 420 |
-
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'
|
| 421 |
-
|
| 422 |
-
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
|
| 423 |
-
freq_indices = repeated_freq_indices[freqs_per_band]
|
| 424 |
-
|
| 425 |
-
if stereo:
|
| 426 |
-
freq_indices = repeat(freq_indices, 'f -> f s', s=2)
|
| 427 |
-
freq_indices = freq_indices * 2 + torch.arange(2)
|
| 428 |
-
freq_indices = rearrange(freq_indices, 'f s -> (f s)')
|
| 429 |
-
|
| 430 |
-
self.register_buffer('freq_indices', freq_indices, persistent=False)
|
| 431 |
-
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)
|
| 432 |
-
|
| 433 |
-
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
|
| 434 |
-
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')
|
| 435 |
-
|
| 436 |
-
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
|
| 437 |
-
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)
|
| 438 |
-
|
| 439 |
-
# band split and mask estimator
|
| 440 |
-
|
| 441 |
-
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())
|
| 442 |
-
|
| 443 |
-
self.band_split = BandSplit(
|
| 444 |
-
dim=dim,
|
| 445 |
-
dim_inputs=freqs_per_bands_with_complex
|
| 446 |
-
)
|
| 447 |
-
|
| 448 |
-
self.mask_estimators = nn.ModuleList([])
|
| 449 |
-
|
| 450 |
-
for _ in range(num_stems):
|
| 451 |
-
mask_estimator = MaskEstimator(
|
| 452 |
-
dim=dim,
|
| 453 |
-
dim_inputs=freqs_per_bands_with_complex,
|
| 454 |
-
depth=mask_estimator_depth
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
self.mask_estimators.append(mask_estimator)
|
| 458 |
-
|
| 459 |
-
# for the multi-resolution stft loss
|
| 460 |
-
|
| 461 |
-
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
|
| 462 |
-
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
|
| 463 |
-
self.multi_stft_n_fft = stft_n_fft
|
| 464 |
-
self.multi_stft_window_fn = multi_stft_window_fn
|
| 465 |
-
|
| 466 |
-
self.multi_stft_kwargs = dict(
|
| 467 |
-
hop_length=multi_stft_hop_size,
|
| 468 |
-
normalized=multi_stft_normalized
|
| 469 |
-
)
|
| 470 |
-
|
| 471 |
-
self.match_input_audio_length = match_input_audio_length
|
| 472 |
-
|
| 473 |
-
def forward(
|
| 474 |
-
self,
|
| 475 |
-
raw_audio,
|
| 476 |
-
target=None,
|
| 477 |
-
return_loss_breakdown=False
|
| 478 |
-
):
|
| 479 |
-
"""
|
| 480 |
-
einops
|
| 481 |
-
|
| 482 |
-
b - batch
|
| 483 |
-
f - freq
|
| 484 |
-
t - time
|
| 485 |
-
s - audio channel (1 for mono, 2 for stereo)
|
| 486 |
-
n - number of 'stems'
|
| 487 |
-
c - complex (2)
|
| 488 |
-
d - feature dimension
|
| 489 |
-
"""
|
| 490 |
-
|
| 491 |
-
device = raw_audio.device
|
| 492 |
-
|
| 493 |
-
if raw_audio.ndim == 2:
|
| 494 |
-
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
| 495 |
-
|
| 496 |
-
batch, channels, raw_audio_length = raw_audio.shape
|
| 497 |
-
|
| 498 |
-
istft_length = raw_audio_length if self.match_input_audio_length else None
|
| 499 |
-
|
| 500 |
-
assert (not self.stereo and channels == 1) or (
|
| 501 |
-
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
| 502 |
-
|
| 503 |
-
# to stft
|
| 504 |
-
|
| 505 |
-
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
| 506 |
-
|
| 507 |
-
stft_window = self.stft_window_fn(device=device)
|
| 508 |
-
|
| 509 |
-
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
| 510 |
-
stft_repr = torch.view_as_real(stft_repr)
|
| 511 |
-
|
| 512 |
-
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
| 513 |
-
stft_repr = rearrange(stft_repr,
|
| 514 |
-
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
| 515 |
-
|
| 516 |
-
# index out all frequencies for all frequency ranges across bands ascending in one go
|
| 517 |
-
|
| 518 |
-
batch_arange = torch.arange(batch, device=device)[..., None]
|
| 519 |
-
|
| 520 |
-
# account for stereo
|
| 521 |
-
|
| 522 |
-
x = stft_repr[batch_arange, self.freq_indices]
|
| 523 |
-
|
| 524 |
-
# fold the complex (real and imag) into the frequencies dimension
|
| 525 |
-
|
| 526 |
-
x = rearrange(x, 'b f t c -> b t (f c)')
|
| 527 |
-
|
| 528 |
-
x = self.band_split(x)
|
| 529 |
-
|
| 530 |
-
# axial / hierarchical attention
|
| 531 |
-
|
| 532 |
-
for transformer_block in self.layers:
|
| 533 |
-
|
| 534 |
-
if len(transformer_block) == 3:
|
| 535 |
-
linear_transformer, time_transformer, freq_transformer = transformer_block
|
| 536 |
-
|
| 537 |
-
x, ft_ps = pack([x], 'b * d')
|
| 538 |
-
x = linear_transformer(x)
|
| 539 |
-
x, = unpack(x, ft_ps, 'b * d')
|
| 540 |
-
else:
|
| 541 |
-
time_transformer, freq_transformer = transformer_block
|
| 542 |
-
|
| 543 |
-
x = rearrange(x, 'b t f d -> b f t d')
|
| 544 |
-
x, ps = pack([x], '* t d')
|
| 545 |
-
|
| 546 |
-
x = time_transformer(x)
|
| 547 |
-
|
| 548 |
-
x, = unpack(x, ps, '* t d')
|
| 549 |
-
x = rearrange(x, 'b f t d -> b t f d')
|
| 550 |
-
x, ps = pack([x], '* f d')
|
| 551 |
-
|
| 552 |
-
x = freq_transformer(x)
|
| 553 |
-
|
| 554 |
-
x, = unpack(x, ps, '* f d')
|
| 555 |
-
|
| 556 |
-
num_stems = len(self.mask_estimators)
|
| 557 |
-
|
| 558 |
-
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
| 559 |
-
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)
|
| 560 |
-
|
| 561 |
-
# modulate frequency representation
|
| 562 |
-
|
| 563 |
-
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
| 564 |
-
|
| 565 |
-
# complex number multiplication
|
| 566 |
-
|
| 567 |
-
stft_repr = torch.view_as_complex(stft_repr)
|
| 568 |
-
masks = torch.view_as_complex(masks)
|
| 569 |
-
|
| 570 |
-
masks = masks.type(stft_repr.dtype)
|
| 571 |
-
|
| 572 |
-
# need to average the estimated mask for the overlapped frequencies
|
| 573 |
-
|
| 574 |
-
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])
|
| 575 |
-
|
| 576 |
-
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
|
| 577 |
-
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)
|
| 578 |
-
|
| 579 |
-
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)
|
| 580 |
-
|
| 581 |
-
masks_averaged = masks_summed / denom.clamp(min=1e-8)
|
| 582 |
-
|
| 583 |
-
# modulate stft repr with estimated mask
|
| 584 |
-
|
| 585 |
-
stft_repr = stft_repr * masks_averaged
|
| 586 |
-
|
| 587 |
-
# istft
|
| 588 |
-
|
| 589 |
-
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
| 590 |
-
|
| 591 |
-
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
|
| 592 |
-
length=istft_length)
|
| 593 |
-
|
| 594 |
-
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)
|
| 595 |
-
|
| 596 |
-
if num_stems == 1:
|
| 597 |
-
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
| 598 |
-
|
| 599 |
-
# if a target is passed in, calculate loss for learning
|
| 600 |
-
|
| 601 |
-
if not exists(target):
|
| 602 |
-
return recon_audio
|
| 603 |
-
|
| 604 |
-
if self.num_stems > 1:
|
| 605 |
-
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
| 606 |
-
|
| 607 |
-
if target.ndim == 2:
|
| 608 |
-
target = rearrange(target, '... t -> ... 1 t')
|
| 609 |
-
|
| 610 |
-
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
| 611 |
-
|
| 612 |
-
loss = F.l1_loss(recon_audio, target)
|
| 613 |
-
|
| 614 |
-
multi_stft_resolution_loss = 0.
|
| 615 |
-
|
| 616 |
-
for window_size in self.multi_stft_resolutions_window_sizes:
|
| 617 |
-
res_stft_kwargs = dict(
|
| 618 |
-
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
|
| 619 |
-
win_length=window_size,
|
| 620 |
-
return_complex=True,
|
| 621 |
-
window=self.multi_stft_window_fn(window_size, device=device),
|
| 622 |
-
**self.multi_stft_kwargs,
|
| 623 |
-
)
|
| 624 |
-
|
| 625 |
-
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
| 626 |
-
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
| 627 |
-
|
| 628 |
-
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
| 629 |
-
|
| 630 |
-
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
|
| 631 |
-
|
| 632 |
-
total_loss = loss + weighted_multi_resolution_loss
|
| 633 |
-
|
| 634 |
-
if not return_loss_breakdown:
|
| 635 |
-
return total_loss
|
| 636 |
-
|
| 637 |
-
return total_loss, (loss, multi_stft_resolution_loss)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|