Spaces:
Runtime error
Runtime error
lmoss
commited on
Commit
·
cd2924d
1
Parent(s):
53bea02
seeing if runtime error can be fixed
Browse files
app.py
CHANGED
|
@@ -8,8 +8,15 @@ import numpy as np
|
|
| 8 |
import numpy.typing as npt
|
| 9 |
from dcgan import DCGAN3D_G
|
| 10 |
import os
|
|
|
|
| 11 |
pv.start_xvfb()
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def download_checkpoint(url: str, path: str) -> None:
|
| 14 |
resp = requests.get(url)
|
| 15 |
|
|
@@ -61,87 +68,91 @@ def create_matplotlib_figure(img: npt.ArrayLike, midpoint: int):
|
|
| 61 |
a.set_axis_off()
|
| 62 |
return fig
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
st.markdown(
|
| 67 |
-
"""
|
| 68 |
-
### Author
|
| 69 |
-
_[Lukas Mosser](https://scholar.google.com/citations?user=y0R9snMAAAAJ&hl=en&oi=ao) (2022)_ - :bird:[porestar](https://twitter.com/porestar)
|
| 70 |
-
|
| 71 |
-
## Description
|
| 72 |
-
This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
|
| 73 |
-
published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
## The Demo
|
| 81 |
-
Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
|
| 82 |
-
|
| 83 |
-
The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
|
| 84 |
-
Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
st.
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import numpy.typing as npt
|
| 9 |
from dcgan import DCGAN3D_G
|
| 10 |
import os
|
| 11 |
+
import pathlib
|
| 12 |
pv.start_xvfb()
|
| 13 |
|
| 14 |
+
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / 'static'
|
| 15 |
+
|
| 16 |
+
DOWNLOADS_PATH = (STREAMLIT_STATIC_PATH / "downloads")
|
| 17 |
+
if not DOWNLOADS_PATH.is_dir():
|
| 18 |
+
DOWNLOADS_PATH.mkdir()
|
| 19 |
+
|
| 20 |
def download_checkpoint(url: str, path: str) -> None:
|
| 21 |
resp = requests.get(url)
|
| 22 |
|
|
|
|
| 68 |
a.set_axis_off()
|
| 69 |
return fig
|
| 70 |
|
| 71 |
+
def main():
|
| 72 |
+
st.title("Generating Porous Media with GANs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
st.markdown(
|
| 75 |
+
"""
|
| 76 |
+
### Author
|
| 77 |
+
_[Lukas Mosser](https://scholar.google.com/citations?user=y0R9snMAAAAJ&hl=en&oi=ao) (2022)_ - :bird:[porestar](https://twitter.com/porestar)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
## Description
|
| 80 |
+
This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
|
| 81 |
+
published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))
|
| 82 |
|
| 83 |
+
The model is a pretrained 3D Deep Convolutional GAN ([Radford 2015](https://arxiv.org/abs/1511.06434)) that generates a volumetric image of a porous medium, here a Berea sandstone, from a set of pretrained weights.
|
| 84 |
+
|
| 85 |
+
## Intent
|
| 86 |
+
I hope this encourages others to create interactive demos of their research for knowledge sharing and validation.
|
| 87 |
+
|
| 88 |
+
## The Demo
|
| 89 |
+
Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
|
| 90 |
+
|
| 91 |
+
The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
|
| 92 |
+
Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
|
| 93 |
+
|
| 94 |
+
### Interactive Model Parameters
|
| 95 |
+
The GAN used here in this study is fully convolutional "_Look Ma' no MLP's_": Changing the spatial extent of the latent space vector _z_
|
| 96 |
+
allows one to generate larger synthetic images.
|
| 97 |
+
|
| 98 |
+
"""
|
| 99 |
+
, unsafe_allow_html=True)
|
| 100 |
+
|
| 101 |
+
view_width = 400
|
| 102 |
+
view_height = 400
|
| 103 |
+
|
| 104 |
+
model_fname = "berea_generator_epoch_24.pth"
|
| 105 |
+
checkpoint_url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/{0:}?raw=true".format(model_fname)
|
| 106 |
+
|
| 107 |
+
download_checkpoint(checkpoint_url, (DOWNLOADS_PATH / model_fname))
|
| 108 |
+
|
| 109 |
+
latent_size = st.slider("Latent Space Size z", min_value=1, max_value=5, step=1)
|
| 110 |
+
img = generate_image((DOWNLOADS_PATH / model_fname), latent_size=latent_size)
|
| 111 |
+
slices, mesh, dist = create_uniform_mesh_marching_cubes(img)
|
| 112 |
+
|
| 113 |
+
pv.set_plot_theme("document")
|
| 114 |
+
pl = pv.Plotter(shape=(1, 1),
|
| 115 |
+
window_size=(view_width, view_height))
|
| 116 |
+
_ = pl.add_mesh(slices, cmap="gray")
|
| 117 |
+
pl.export_html((DOWNLOADS_PATH / 'slices.html'))
|
| 118 |
+
|
| 119 |
+
pl = pv.Plotter(shape=(1, 1),
|
| 120 |
+
window_size=(view_width, view_height))
|
| 121 |
+
_ = pl.add_mesh(mesh, scalars=dist)
|
| 122 |
+
pl.export_html((DOWNLOADS_PATH / 'mesh.html'))
|
| 123 |
+
|
| 124 |
+
st.header("2D Cross-Section of Generated Volume")
|
| 125 |
+
fig = create_matplotlib_figure(img, img.shape[0]//2)
|
| 126 |
+
st.pyplot(fig=fig)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
HtmlFile = open((DOWNLOADS_PATH / 'slices.html'), 'r', encoding='utf-8')
|
| 131 |
+
source_code = HtmlFile.read()
|
| 132 |
+
st.header("3D Intersections")
|
| 133 |
+
components.html(source_code, width=view_width, height=view_height)
|
| 134 |
+
st.markdown("_Click and drag to spin, right click to shift._")
|
| 135 |
+
|
| 136 |
+
HtmlFile = open((DOWNLOADS_PATH / 'mesh.html'), 'r', encoding='utf-8')
|
| 137 |
+
source_code = HtmlFile.read()
|
| 138 |
+
st.header("3D Pore Space Mesh")
|
| 139 |
+
components.html(source_code, width=view_width, height=view_height)
|
| 140 |
+
st.markdown("_Click and drag to spin, right click to shift._")
|
| 141 |
+
|
| 142 |
+
st.markdown("""
|
| 143 |
+
## Citation
|
| 144 |
+
If you use our code for your own research, we would be grateful if you cite our publication:
|
| 145 |
+
```
|
| 146 |
+
@article{pmgan2017,
|
| 147 |
+
title={Reconstruction of three-dimensional porous media using generative adversarial neural networks},
|
| 148 |
+
author={Mosser, Lukas and Dubrule, Olivier and Blunt, Martin J.},
|
| 149 |
+
journal={arXiv preprint arXiv:1704.03225},
|
| 150 |
+
year={2017}
|
| 151 |
+
}```
|
| 152 |
+
""")
|
| 153 |
+
|
| 154 |
+
#os.remove("slices.html")
|
| 155 |
+
#os.remove("mesh.html")
|
| 156 |
+
|
| 157 |
+
if __name__ == "__main__":
|
| 158 |
+
main()
|