File size: 8,841 Bytes
49b13c6
 
 
 
 
 
 
518f864
49b13c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518f864
 
49b13c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import asyncio
import json
from pathlib import Path
from typing import Any

from pydantic import BaseModel

from vsp.app.main import VspDataEnrichment
from vsp.app.model.linkedin.linkedin_models import LinkedinProfile
from vsp.app.model.vsp.vsp_models import VSPProfile
from vsp.shared import logger_factory

logger = logger_factory.get_logger(__name__)


class ComparisonResult(BaseModel):
    profile_name: str
    correct_enums: int
    total_enums: int
    accuracy: float
    additional_enums_in_actual: int
    comparisons: dict[str, Any]


def load_profiles() -> dict[str, tuple[LinkedinProfile, VSPProfile]]:
    sample_profiles_dir = Path("tests/test_data/sample_profiles")
    classified_profiles_dir = Path("tests/test_data/sample_profiles_classified")
    profiles = {}

    for profile_file in sample_profiles_dir.glob("*.json"):
        name = profile_file.stem
        with profile_file.open() as f:
            linkedin_data = json.load(f)
            linkedin_profile = LinkedinProfile.model_validate(linkedin_data)

        classified_file = classified_profiles_dir / f"{name}.json"
        if classified_file.exists():
            with classified_file.open() as f:
                classified_data = json.load(f)
                classified_profile = VSPProfile.model_validate(classified_data)

            profiles[name] = (linkedin_profile, classified_profile)

    return profiles


async def compare_profiles(linkedin_profile: LinkedinProfile, classified_profile: VSPProfile) -> ComparisonResult:
    vsp_enrichment = VspDataEnrichment()
    result = await vsp_enrichment.process_linkedin_profile(linkedin_profile)
    comparisons = {}
    correct_enums = 0
    total_enums = 0
    additional_enums_in_actual = 0

    # Compare educations
    for classified_edu, result_edu in zip(classified_profile.education.education_history, result.classified_educations):
        comparisons[f"Education: {classified_edu.school}"] = {
            "expected": classified_edu.degree_characterization,
            "actual": result_edu.classification.output.value,
            "confidence": result_edu.classification.confidence,
            "reasoning": result_edu.classification.reasoning,
        }
        if classified_edu.degree_characterization is not None:
            total_enums += 1
            if classified_edu.degree_characterization == result_edu.classification.output.value:
                correct_enums += 1
        elif result_edu.classification.output.value is not None:
            additional_enums_in_actual += 1

    # Compare work experiences
    for classified_exp, result_exp in zip(
        classified_profile.professional_experience.experience_history, result.classified_work_experiences
    ):
        exp_key = f"Job: {classified_exp.title} at {classified_exp.company}"
        comparisons[exp_key] = {
            "primary_job_type": {
                "expected": classified_exp.primary_job_type,
                "actual": result_exp.work_experience_classification.primary_job_type.value,
                "confidence": result_exp.work_experience_classification.confidence,
                "reasoning": result_exp.work_experience_classification.reasoning,
            },
            "secondary_job_type": {
                "expected": classified_exp.secondary_job_type,
                "actual": result_exp.work_experience_classification.secondary_job_type.value,
                "confidence": result_exp.work_experience_classification.confidence,
                "reasoning": result_exp.work_experience_classification.reasoning,
            },
        }
        if classified_exp.primary_job_type is not None:
            total_enums += 1
            if classified_exp.primary_job_type == result_exp.work_experience_classification.primary_job_type.value:
                correct_enums += 1
        elif result_exp.work_experience_classification.primary_job_type.value is not None:
            additional_enums_in_actual += 1

        if classified_exp.secondary_job_type is not None:
            total_enums += 1
            if classified_exp.secondary_job_type == result_exp.work_experience_classification.secondary_job_type.value:
                correct_enums += 1
        elif result_exp.work_experience_classification.secondary_job_type.value is not None:
            additional_enums_in_actual += 1

        # Add comparisons for investment banking, investing focus, etc. if available
        if result_exp.investment_banking_classification:
            comparisons[exp_key]["investment_banking_group"] = {
                "expected": classified_exp.investment_banking_focus,
                "actual": result_exp.investment_banking_classification.investment_banking_group.value,
                "confidence": result_exp.investment_banking_classification.confidence,
                "reasoning": result_exp.investment_banking_classification.reasoning,
            }
            if classified_exp.investment_banking_focus is not None:
                total_enums += 1
                if (
                    classified_exp.investment_banking_focus
                    == result_exp.investment_banking_classification.investment_banking_group.value
                ):
                    correct_enums += 1
            elif result_exp.investment_banking_classification.investment_banking_group.value is not None:
                additional_enums_in_actual += 1

        if result_exp.investing_focus_asset_class_classification:
            comparisons[exp_key]["investing_focus_asset_class"] = {
                "expected": classified_exp.investing_focus_stage,
                "actual": result_exp.investing_focus_asset_class_classification.investing_focus_asset_class.value,
                "confidence": result_exp.investing_focus_asset_class_classification.confidence,
                "reasoning": result_exp.investing_focus_asset_class_classification.reasoning,
            }
            if classified_exp.investing_focus_stage is not None:
                total_enums += 1
                if (
                    classified_exp.investing_focus_stage
                    == result_exp.investing_focus_asset_class_classification.investing_focus_asset_class.value
                ):
                    correct_enums += 1
            elif result_exp.investing_focus_asset_class_classification.investing_focus_asset_class.value is not None:
                additional_enums_in_actual += 1

        if result_exp.investing_focus_sector_classification:
            comparisons[exp_key]["investing_focus_sector"] = {
                "expected": classified_exp.investing_focus_sector,
                "actual": result_exp.investing_focus_sector_classification.investing_focus_sector.value,
                "confidence": result_exp.investing_focus_sector_classification.confidence,
                "reasoning": result_exp.investing_focus_sector_classification.reasoning,
            }
            if classified_exp.investing_focus_sector is not None:
                total_enums += 1
                if (
                    classified_exp.investing_focus_sector
                    == result_exp.investing_focus_sector_classification.investing_focus_sector.value
                ):
                    correct_enums += 1
            elif result_exp.investing_focus_sector_classification.investing_focus_sector.value is not None:
                additional_enums_in_actual += 1

    accuracy = correct_enums / total_enums if total_enums > 0 else 0
    return ComparisonResult(
        profile_name=f"{linkedin_profile.first_name} {linkedin_profile.last_name}",
        correct_enums=correct_enums,
        total_enums=total_enums,
        accuracy=accuracy,
        additional_enums_in_actual=additional_enums_in_actual,
        comparisons=comparisons,
    )


async def run_tests() -> None:
    profiles = load_profiles()
    results = []

    for _, (linkedin_profile, classified_profile) in profiles.items():
        result = await compare_profiles(linkedin_profile, classified_profile)
        results.append(result)
        logger.info(
            f"Processed {result.profile_name}: Accuracy {result.accuracy:.2%}, "
            f"Additional enums in actual: {result.additional_enums_in_actual}"
        )

    overall_accuracy = sum(r.accuracy for r in results) / len(results)
    total_additional_enums = sum(r.additional_enums_in_actual for r in results)
    logger.info(f"Overall accuracy: {overall_accuracy:.2%}")
    logger.info(f"Total additional enums in actual: {total_additional_enums}")

    # Save detailed results to a JSON file
    with open("enum_classifier_results.json", "w") as f:
        json.dump([r.model_dump() for r in results], f, indent=2)

    logger.info("Detailed results saved to enum_classifier_results.json")


if __name__ == "__main__":
    asyncio.run(run_tests())