Spaces:
Sleeping
Sleeping
Commit
·
5c80b12
1
Parent(s):
869b2b3
chore: remove hsare
Browse files
main.py
CHANGED
|
@@ -5,7 +5,7 @@ from huggingface_hub import PyTorchModelHubMixin
|
|
| 5 |
from torchvision.models import mobilenet_v3_large
|
| 6 |
from torchvision.transforms import v2
|
| 7 |
from PIL import Image
|
| 8 |
-
|
| 9 |
|
| 10 |
|
| 11 |
class TrashMobileNet(nn.Module, PyTorchModelHubMixin):
|
|
@@ -24,12 +24,10 @@ class TrashMobileNet(nn.Module, PyTorchModelHubMixin):
|
|
| 24 |
return x
|
| 25 |
|
| 26 |
|
| 27 |
-
# Load the model from Hugging Face Hub
|
| 28 |
model_name = "pradanaadn/trash-clasification"
|
| 29 |
model = TrashMobileNet.from_pretrained(model_name)
|
| 30 |
model.eval()
|
| 31 |
|
| 32 |
-
# Define the image transformations
|
| 33 |
transform = v2.Compose([
|
| 34 |
v2.Resize((224, 224)),
|
| 35 |
v2.ToImage(),
|
|
@@ -38,20 +36,18 @@ transform = v2.Compose([
|
|
| 38 |
|
| 39 |
|
| 40 |
def predict(image):
|
| 41 |
-
|
| 42 |
-
Prediction function that takes a Gradio image input and returns class probabilities
|
| 43 |
-
"""
|
| 44 |
labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
| 45 |
|
| 46 |
-
|
| 47 |
if not isinstance(image, Image.Image):
|
| 48 |
image = Image.fromarray(image)
|
| 49 |
|
| 50 |
-
|
| 51 |
image_tensor = transform(image)
|
| 52 |
image_tensor = image_tensor.unsqueeze(0)
|
| 53 |
|
| 54 |
-
|
| 55 |
with torch.no_grad():
|
| 56 |
outputs = model(image_tensor)
|
| 57 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
|
@@ -63,7 +59,6 @@ def predict(image):
|
|
| 63 |
|
| 64 |
|
| 65 |
|
| 66 |
-
# Create example images if they don't exist (you would need to provide these images)
|
| 67 |
examples = [
|
| 68 |
["examples/cardbox.jpeg", "A cardboard box"],
|
| 69 |
["examples/glass.jpeg", "A glass bottle"],
|
|
@@ -106,4 +101,4 @@ with gr.Blocks() as iface:
|
|
| 106 |
|
| 107 |
|
| 108 |
# Launch the interface
|
| 109 |
-
iface.launch(
|
|
|
|
| 5 |
from torchvision.models import mobilenet_v3_large
|
| 6 |
from torchvision.transforms import v2
|
| 7 |
from PIL import Image
|
| 8 |
+
|
| 9 |
|
| 10 |
|
| 11 |
class TrashMobileNet(nn.Module, PyTorchModelHubMixin):
|
|
|
|
| 24 |
return x
|
| 25 |
|
| 26 |
|
|
|
|
| 27 |
model_name = "pradanaadn/trash-clasification"
|
| 28 |
model = TrashMobileNet.from_pretrained(model_name)
|
| 29 |
model.eval()
|
| 30 |
|
|
|
|
| 31 |
transform = v2.Compose([
|
| 32 |
v2.Resize((224, 224)),
|
| 33 |
v2.ToImage(),
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def predict(image):
|
| 39 |
+
|
|
|
|
|
|
|
| 40 |
labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
| 41 |
|
| 42 |
+
|
| 43 |
if not isinstance(image, Image.Image):
|
| 44 |
image = Image.fromarray(image)
|
| 45 |
|
| 46 |
+
|
| 47 |
image_tensor = transform(image)
|
| 48 |
image_tensor = image_tensor.unsqueeze(0)
|
| 49 |
|
| 50 |
+
|
| 51 |
with torch.no_grad():
|
| 52 |
outputs = model(image_tensor)
|
| 53 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
|
|
|
|
| 62 |
examples = [
|
| 63 |
["examples/cardbox.jpeg", "A cardboard box"],
|
| 64 |
["examples/glass.jpeg", "A glass bottle"],
|
|
|
|
| 101 |
|
| 102 |
|
| 103 |
# Launch the interface
|
| 104 |
+
iface.launch()
|