Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,40 @@
|
|
| 1 |
-
# Import necessary libraries
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
-
import os
|
| 5 |
from openai import OpenAI
|
| 6 |
-
|
| 7 |
-
import utils
|
| 8 |
-
|
| 9 |
-
DENVR_API_KEY = utils.DENVR_API_KEY
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
working_dir = os.path.dirname(os.path.abspath(__file__))
|
| 13 |
-
endpoint_data = json.load(open(f"{working_dir}/model_info.json"))
|
| 14 |
-
xeon_endpoint_data = json.load(open(f"{working_dir}/model_info_xeon.json"))
|
| 15 |
-
|
| 16 |
def clear_chat():
|
| 17 |
st.session_state.messages = []
|
| 18 |
-
|
| 19 |
st.title("Inference as a Service Playground")
|
| 20 |
-
|
| 21 |
-
# Extract the keys (model names) from the JSON data
|
| 22 |
-
model_names = list(endpoint_data.keys())
|
| 23 |
-
xeon_model_names = list(xeon_endpoint_data.keys())
|
| 24 |
endpoint = ""
|
| 25 |
hardware_option = ""
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
with st.sidebar:
|
| 28 |
-
# Add radio buttons for "Gaudi" and "Xeon"
|
| 29 |
-
option = st.radio("Select Hardware", ("Gaudi (Denvr)", "Xeon (AWS)"))
|
| 30 |
-
hardware_option = option
|
| 31 |
-
# Display corresponding model dropdowns based on the selected hardware
|
| 32 |
-
if option == "Gaudi (Denvr)":
|
| 33 |
-
modelname = st.selectbox("Select a LLM model (Hosted by DENVR DATAWORKS) runs on Gaudi", model_names)
|
| 34 |
-
endpoint = endpoint_data[modelname]
|
| 35 |
-
CLIENT_SECRET = os.getenv('CLIENT_SECRET')
|
| 36 |
-
if DENVR_API_KEY == "" or utils.is_token_expired(DENVR_API_KEY, CLIENT_SECRET):
|
| 37 |
-
DENVR_API_KEY = utils.generate_token(hardware_option)
|
| 38 |
-
print(f"Gaudi Endpoint: {endpoint}")
|
| 39 |
-
elif option == "Xeon (AWS)":
|
| 40 |
-
modelname = st.selectbox("Select a LLM model that runs on Xeon", xeon_model_names)
|
| 41 |
-
endpoint = xeon_endpoint_data[modelname]
|
| 42 |
-
CLIENT_SECRET = os.getenv('XEON_CLIENT_SECRET')
|
| 43 |
-
if DENVR_API_KEY == "" or utils.is_token_expired(DENVR_API_KEY, CLIENT_SECRET):
|
| 44 |
-
DENVR_API_KEY = utils.generate_token(hardware_option)
|
| 45 |
-
print(f"Xeon Endpoint: {endpoint}")
|
| 46 |
-
# modelname = st.selectbox("Select a LLM model (Hosted by DENVR DATAWORKS) ", model_names)
|
| 47 |
-
st.write(f"You selected: {modelname}")
|
| 48 |
st.button("Start New Chat", on_click=clear_chat)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
client = OpenAI(api_key=api_key, base_url=base_url)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
models = client.models.list()
|
| 56 |
-
modelname = models.data[0].id
|
| 57 |
-
|
| 58 |
-
|
| 59 |
if "messages" not in st.session_state:
|
| 60 |
st.session_state.messages = []
|
| 61 |
-
|
| 62 |
for message in st.session_state.messages:
|
| 63 |
with st.chat_message(message["role"]):
|
| 64 |
st.markdown(message["content"])
|
| 65 |
-
|
| 66 |
if prompt := st.chat_input("What is up?"):
|
| 67 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 68 |
with st.chat_message("user"):
|
| 69 |
st.markdown(prompt)
|
| 70 |
-
|
| 71 |
with st.chat_message("assistant"):
|
| 72 |
stream = client.chat.completions.create(
|
| 73 |
model=modelname,
|
|
@@ -79,6 +46,4 @@ if prompt := st.chat_input("What is up?"):
|
|
| 79 |
stream=True,
|
| 80 |
)
|
| 81 |
response = st.write_stream(stream)
|
| 82 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
from openai import OpenAI
|
| 3 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
def clear_chat():
|
| 5 |
st.session_state.messages = []
|
| 6 |
+
|
| 7 |
st.title("Inference as a Service Playground")
|
| 8 |
+
|
|
|
|
|
|
|
|
|
|
| 9 |
endpoint = ""
|
| 10 |
hardware_option = ""
|
| 11 |
+
api_key = ""
|
| 12 |
+
base_url = ""
|
| 13 |
+
modelname = ""
|
| 14 |
+
|
| 15 |
with st.sidebar:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
st.button("Start New Chat", on_click=clear_chat)
|
| 17 |
+
|
| 18 |
+
# Input fields for API key and base URL
|
| 19 |
+
api_key = st.text_input("API Key", type="password")
|
| 20 |
+
base_url = st.text_input("Base URL")
|
| 21 |
+
model_name = st.text_input("Model Id")
|
| 22 |
+
|
| 23 |
client = OpenAI(api_key=api_key, base_url=base_url)
|
| 24 |
+
|
| 25 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if "messages" not in st.session_state:
|
| 27 |
st.session_state.messages = []
|
| 28 |
+
|
| 29 |
for message in st.session_state.messages:
|
| 30 |
with st.chat_message(message["role"]):
|
| 31 |
st.markdown(message["content"])
|
| 32 |
+
|
| 33 |
if prompt := st.chat_input("What is up?"):
|
| 34 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 35 |
with st.chat_message("user"):
|
| 36 |
st.markdown(prompt)
|
| 37 |
+
|
| 38 |
with st.chat_message("assistant"):
|
| 39 |
stream = client.chat.completions.create(
|
| 40 |
model=modelname,
|
|
|
|
| 46 |
stream=True,
|
| 47 |
)
|
| 48 |
response = st.write_stream(stream)
|
| 49 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|