Spaces:
Runtime error
Runtime error
Create app.py
Browse filesGitHub Repository: https://github.com/CapstoneProjectimagecaptioning/image_captioning_transformer
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel
|
| 4 |
+
|
| 5 |
+
device = 'cpu'
|
| 6 |
+
|
| 7 |
+
# Load the pretrained model, feature extractor, and tokenizer
|
| 8 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device)
|
| 9 |
+
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 11 |
+
|
| 12 |
+
def predict(image, max_length=64, num_beams=4):
|
| 13 |
+
# Process the input image
|
| 14 |
+
image = image.convert('RGB')
|
| 15 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
|
| 16 |
+
|
| 17 |
+
# Generate the caption
|
| 18 |
+
caption_ids = model.generate(pixel_values, max_length=max_length, num_beams=num_beams)[0]
|
| 19 |
+
|
| 20 |
+
# Decode and clean the generated caption
|
| 21 |
+
caption = tokenizer.decode(caption_ids, skip_special_tokens=True)
|
| 22 |
+
return caption
|
| 23 |
+
|
| 24 |
+
css = '''
|
| 25 |
+
h1#title {
|
| 26 |
+
text-align: center;
|
| 27 |
+
}
|
| 28 |
+
h3#header {
|
| 29 |
+
text-align: center;
|
| 30 |
+
}
|
| 31 |
+
img#overview {
|
| 32 |
+
max-width: 800px;
|
| 33 |
+
max-height: 600px;
|
| 34 |
+
}
|
| 35 |
+
img#style-image {
|
| 36 |
+
max-width: 1000px;
|
| 37 |
+
max-height: 600px;
|
| 38 |
+
}
|
| 39 |
+
'''
|
| 40 |
+
|
| 41 |
+
demo = gr.Blocks(css=css)
|
| 42 |
+
|
| 43 |
+
with demo:
|
| 44 |
+
gr.Markdown('''<h1 id="title">Automated Image Captioning Using Generative AI: A Transformer based approach 🖼️</h1>''')
|
| 45 |
+
gr.Markdown('Contributed by : Premanth Alahari, Charan Gudivada')
|
| 46 |
+
|
| 47 |
+
with gr.Column():
|
| 48 |
+
input_image = gr.Image(label="Upload your Image", type='pil')
|
| 49 |
+
output_caption = gr.Textbox(label="Generated Caption")
|
| 50 |
+
|
| 51 |
+
btn = gr.Button("Generate Caption")
|
| 52 |
+
btn.click(fn=predict, inputs=input_image, outputs=output_caption)
|
| 53 |
+
|
| 54 |
+
demo.launch()
|