Spaces:
Runtime error
Runtime error
File size: 24,601 Bytes
66937e6 ff176e8 c358674 ff176e8 c358674 ff176e8 c6815c0 ff176e8 c358674 8967a30 ff176e8 8967a30 66937e6 ff176e8 962b8c2 c358674 66937e6 962b8c2 c358674 914c99d c358674 ff176e8 c358674 66937e6 c358674 912e6dd c358674 912e6dd ff176e8 bddeb26 c358674 ee0b470 ff176e8 c358674 bddeb26 912e6dd bddeb26 962b8c2 bddeb26 ee4fca1 c358674 42ed573 c358674 bddeb26 8967a30 c358674 8967a30 c358674 ff176e8 42ed573 ff176e8 c358674 912e6dd 8967a30 912e6dd 962b8c2 c358674 ff176e8 42ed573 ff176e8 912e6dd ff176e8 912e6dd 8967a30 ff176e8 962b8c2 912e6dd 8967a30 912e6dd ff176e8 c358674 ee4fca1 c358674 ee4fca1 38897a0 962b8c2 ff176e8 962b8c2 38897a0 ff176e8 38897a0 ff176e8 38897a0 ff176e8 c358674 c6815c0 42ed573 962b8c2 42ed573 912e6dd 962b8c2 c358674 ee4fca1 c358674 962b8c2 c358674 ff176e8 c6815c0 c358674 29b547d ee4fca1 c358674 ee4fca1 945ea91 962b8c2 ff176e8 c358674 962b8c2 914c99d 962b8c2 914c99d 962b8c2 914c99d 962b8c2 ff176e8 962b8c2 c358674 962b8c2 c358674 ff176e8 c358674 962b8c2 ff176e8 962b8c2 ff176e8 962b8c2 ff176e8 945ea91 90b4727 795fbb2 ee4fca1 c6815c0 914c99d 795fbb2 ff176e8 962b8c2 42ed573 c358674 bddeb26 42ed573 bddeb26 ee4fca1 c358674 ee4fca1 bddeb26 42ed573 c6815c0 ee4fca1 c358674 ee4fca1 c358674 ee4fca1 c358674 bddeb26 ff176e8 912e6dd bddeb26 962b8c2 912e6dd c6815c0 bddeb26 962b8c2 bddeb26 962b8c2 c358674 914c99d 962b8c2 bddeb26 c358674 962b8c2 c358674 914c99d 42ed573 ee4fca1 bddeb26 42ed573 c358674 912e6dd 914c99d 42ed573 ee4fca1 42ed573 bddeb26 c358674 ee4fca1 914c99d bddeb26 c6815c0 c358674 bddeb26 ff176e8 c358674 c6815c0 962b8c2 c358674 ff176e8 38897a0 ff176e8 bddeb26 c358674 ff176e8 bddeb26 c358674 ff176e8 bddeb26 ff176e8 c358674 962b8c2 c358674 ff176e8 c358674 ff176e8 c358674 ff176e8 c6815c0 c358674 c6815c0 ff176e8 962b8c2 d2e5a40 962b8c2 ff176e8 d2e5a40 ff176e8 c358674 ff176e8 c6815c0 ee4fca1 c358674 c6815c0 c358674 ff176e8 962b8c2 ee4fca1 70165c0 c6815c0 70165c0 ff176e8 962b8c2 ee4fca1 962b8c2 c358674 70165c0 912e6dd c358674 ff176e8 ee4fca1 70165c0 ee4fca1 c358674 ee4fca1 c358674 70165c0 ee4fca1 c358674 bddeb26 c358674 bddeb26 c358674 70165c0 c358674 bddeb26 ff176e8 912e6dd ff176e8 912e6dd c358674 962b8c2 c358674 70165c0 c358674 ee4fca1 c358674 962b8c2 c358674 c6815c0 c358674 912e6dd ff176e8 912e6dd c358674 912e6dd ff176e8 c358674 ff176e8 bddeb26 ee0b470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
import spaces # MUST be first, before any CUDA-related imports
import gradio as gr
import torch
from diffusers import (
StableDiffusionXLControlNetImg2ImgPipeline, # Changed to img2img
ControlNetModel,
AutoencoderKL,
LCMScheduler,
DPMSolverMultistepScheduler
)
from diffusers.models.attention_processor import AttnProcessor2_0
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import cv2
import math
from controlnet_aux import ZoeDetector # Better depth detection
from huggingface_hub import hf_hub_download
import os
# Configuration
MODEL_REPO = "primerz/pixagram"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# LORA trigger word
TRIGGER_WORD = "p1x3l4rt, pixel art"
# Use LCM or DPM++ scheduler
USE_LCM = True # Set to False to use DPM++ 2M Karras
print(f"Using device: {device}")
print(f"Loading models from: {MODEL_REPO}")
print(f"LORA Trigger Word: {TRIGGER_WORD}")
print(f"Scheduler: {'LCM' if USE_LCM else 'DPM++ 2M Karras'}")
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
"""Draw facial keypoints on image for InstantID ControlNet"""
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly(
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
class RetroArtConverter:
def __init__(self):
self.device = device
self.dtype = dtype
self.use_lcm = USE_LCM
self.models_loaded = {
'custom_checkpoint': False,
'lora': False,
'instantid': False,
'zoe_depth': False
}
# Initialize face analysis for InstantID
print("Loading face analysis model...")
try:
self.face_app = FaceAnalysis(
name='antelopev2',
root='./models/insightface',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
self.face_app.prepare(ctx_id=0, det_size=(640, 640))
print("โ Face analysis model loaded successfully")
self.face_detection_enabled = True
except Exception as e:
print(f"โ ๏ธ Face detection not available: {e}")
self.face_app = None
self.face_detection_enabled = False
# Load Zoe Depth detector (better than DPT)
print("Loading Zoe Depth detector...")
try:
self.zoe_depth = ZoeDetector.from_pretrained("lllyasviel/Annotators")
self.zoe_depth.to(self.device)
print("โ Zoe Depth loaded successfully")
self.models_loaded['zoe_depth'] = True
except Exception as e:
print(f"โ ๏ธ Zoe Depth not available: {e}")
self.zoe_depth = None
# Load ControlNet for depth
print("Loading ControlNet Zoe Depth model...")
self.controlnet_depth = ControlNetModel.from_pretrained(
"diffusers/controlnet-zoe-depth-sdxl-1.0",
torch_dtype=self.dtype
).to(self.device)
# Load InstantID ControlNet
print("Loading InstantID ControlNet...")
try:
self.controlnet_instantid = ControlNetModel.from_pretrained(
"InstantX/InstantID",
subfolder="ControlNetModel",
torch_dtype=self.dtype
).to(self.device)
print("โ InstantID ControlNet loaded successfully")
self.instantid_enabled = True
self.models_loaded['instantid'] = True
except Exception as e:
print(f"โ ๏ธ InstantID ControlNet not available: {e}")
self.controlnet_instantid = None
self.instantid_enabled = False
# Determine which controlnets to use
if self.instantid_enabled and self.controlnet_instantid is not None:
controlnets = [self.controlnet_instantid, self.controlnet_depth]
print(f"Initializing with multiple ControlNets: InstantID + Depth")
else:
controlnets = self.controlnet_depth
print(f"Initializing with single ControlNet: Depth only")
# Load SDXL checkpoint from HuggingFace Hub
print("Loading SDXL checkpoint (horizon) with bundled VAE from HuggingFace Hub...")
try:
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="horizon.safetensors",
repo_type="model"
)
# Use Img2Img pipeline
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_single_file(
model_path,
controlnet=controlnets,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
print("โ Custom checkpoint loaded successfully (VAE bundled)")
self.models_loaded['custom_checkpoint'] = True
except Exception as e:
print(f"โ ๏ธ Could not load custom checkpoint: {e}")
print("Using default SDXL base model")
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnets,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
self.models_loaded['custom_checkpoint'] = False
# Load LORA from HuggingFace Hub
print("Loading LORA (retroart) from HuggingFace Hub...")
try:
lora_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="retroart.safetensors",
repo_type="model"
)
self.pipe.load_lora_weights(lora_path)
print(f"โ LORA loaded successfully")
print(f" Trigger word: '{TRIGGER_WORD}'")
self.models_loaded['lora'] = True
except Exception as e:
print(f"โ ๏ธ Could not load LORA: {e}")
self.models_loaded['lora'] = False
# Setup scheduler based on USE_LCM flag
if self.use_lcm:
print("Setting up LCM scheduler...")
self.pipe.scheduler = LCMScheduler.from_config(
self.pipe.scheduler.config
)
else:
print("Setting up DPM++ 2M Karras scheduler...")
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True
)
# Enable attention optimizations
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
# Try to enable xformers
if self.device == "cuda":
try:
self.pipe.enable_xformers_memory_efficient_attention()
print("โ xformers enabled")
except Exception as e:
print(f"โ ๏ธ xformers not available: {e}")
# Set CLIP skip to 2
if hasattr(self.pipe, 'text_encoder'):
self.clip_skip = 2
print(f"โ CLIP skip set to {self.clip_skip}")
# Track controlnet configuration
self.using_multiple_controlnets = isinstance(controlnets, list)
print(f"Pipeline initialized with {'multiple' if self.using_multiple_controlnets else 'single'} ControlNet(s)")
print("\n=== MODEL STATUS ===")
for model, loaded in self.models_loaded.items():
status = "โ LOADED" if loaded else "โ FALLBACK"
print(f"{model}: {status}")
print("===================\n")
print("โ Model initialization complete!")
print("\n=== CONFIGURATION ===")
print(f"Scheduler: {'LCM' if self.use_lcm else 'DPM++ 2M Karras'}")
if self.use_lcm:
print("Recommended Steps: 12")
print("Recommended CFG: 1.0-1.5")
else:
print("Recommended Steps: 30-50")
print("Recommended CFG: 7.0-8.0")
print("Recommended Resolution: 896x1152 or 832x1216")
print("CLIP Skip: 2")
print(f"LORA Trigger: '{TRIGGER_WORD}'")
print("=====================\n")
def get_depth_map(self, image):
"""Generate depth map using Zoe Depth"""
if self.zoe_depth is not None:
try:
# Ensure clean PIL Image to avoid numpy type issues in ZoeDepth
# Convert to RGB explicitly to ensure proper format
if image.mode != 'RGB':
image = image.convert('RGB')
# Get dimensions and ensure they're Python ints
width, height = image.size
width, height = int(width), int(height)
# Create a fresh image to avoid any numpy type contamination
# This fixes the nn.functional.interpolate numpy.int64 error
image_array = np.array(image)
clean_image = Image.fromarray(image_array.astype(np.uint8))
# Use Zoe detector
depth_image = self.zoe_depth(clean_image)
return depth_image
except Exception as e:
print(f"Warning: ZoeDetector failed ({e}), falling back to grayscale depth")
# Fallback if ZoeDetector fails
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
depth_colored = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_colored)
else:
# Fallback to simple grayscale
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
depth_colored = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_colored)
def calculate_optimal_size(self, original_width, original_height):
"""Calculate optimal size from recommended resolutions"""
aspect_ratio = original_width / original_height
# Recommended resolutions for this model
recommended_sizes = [
(896, 1152), # Portrait
(1152, 896), # Landscape
(832, 1216), # Tall portrait
(1216, 832), # Wide landscape
(1024, 1024) # Square
]
# Find closest matching aspect ratio
best_match = None
best_diff = float('inf')
for width, height in recommended_sizes:
rec_aspect = width / height
diff = abs(rec_aspect - aspect_ratio)
if diff < best_diff:
best_diff = diff
best_match = (width, height)
# Ensure dimensions are multiples of 8 and explicitly convert to Python int
width, height = best_match
width = int((width // 8) * 8)
height = int((height // 8) * 8)
return width, height
def add_trigger_word(self, prompt):
"""Add trigger word to prompt if not present"""
if TRIGGER_WORD.lower() not in prompt.lower():
return f"{TRIGGER_WORD}, {prompt}"
return prompt
def generate_retro_art(
self,
input_image,
prompt="retro game character, vibrant colors, detailed",
negative_prompt="blurry, low quality, ugly, distorted",
num_inference_steps=12,
guidance_scale=1.0,
controlnet_conditioning_scale=0.8,
lora_scale=1.0,
identity_preservation=0.8,
strength=0.75 # img2img strength
):
"""Generate retro art with img2img pipeline"""
# Add trigger word to prompt
prompt = self.add_trigger_word(prompt)
# Calculate optimal size
original_width, original_height = input_image.size
target_width, target_height = self.calculate_optimal_size(original_width, original_height)
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
print(f"Prompt: {prompt}")
print(f"Img2Img Strength: {strength}")
# Resize with high quality - ensure dimensions are Python ints
resized_image = input_image.resize((int(target_width), int(target_height)), Image.LANCZOS)
# Generate depth map using Zoe
print("Generating Zoe depth map...")
depth_image = self.get_depth_map(resized_image)
if depth_image.size != (target_width, target_height):
depth_image = depth_image.resize((int(target_width), int(target_height)), Image.LANCZOS)
# Handle face detection for InstantID
using_multiple_controlnets = self.using_multiple_controlnets
face_kps_image = None
face_embeddings = None
has_detected_faces = False
if using_multiple_controlnets and self.face_app is not None:
print("Detecting faces and extracting keypoints...")
img_array = cv2.cvtColor(np.array(resized_image), cv2.COLOR_RGB2BGR)
faces = self.face_app.get(img_array)
if len(faces) > 0:
has_detected_faces = True
print(f"Detected {len(faces)} face(s)")
# Get largest face
face = sorted(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
# Extract face embeddings
face_embeddings = face.normed_embedding
# Draw keypoints
face_kps = face.kps
face_kps_image = draw_kps(resized_image, face_kps)
print(f"Face info: bbox={face.bbox}, age={face.age if hasattr(face, 'age') else 'N/A'}, gender={'M' if face.gender == 1 else 'F' if hasattr(face, 'gender') else 'N/A'}")
# Set LORA scale
if hasattr(self.pipe, 'set_adapters') and self.models_loaded['lora']:
try:
self.pipe.set_adapters(["retroart"], adapter_weights=[lora_scale])
print(f"LORA scale: {lora_scale}")
except Exception as e:
print(f"Could not set LORA scale: {e}")
# Prepare generation kwargs
pipe_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"image": resized_image, # img2img source
"strength": strength, # how much to transform
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": torch.Generator(device=self.device).manual_seed(42)
}
# Add CLIP skip
if hasattr(self.pipe, 'text_encoder'):
pipe_kwargs["clip_skip"] = 2
# Configure ControlNet inputs
if using_multiple_controlnets and has_detected_faces and face_kps_image is not None:
print("Using InstantID (keypoints) + Depth ControlNets")
# Order: [InstantID, Depth]
control_images = [face_kps_image, depth_image]
conditioning_scales = [identity_preservation, controlnet_conditioning_scale]
pipe_kwargs["control_image"] = control_images
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
elif using_multiple_controlnets and not has_detected_faces:
print("Multiple ControlNets available but no faces detected, using depth only")
# Use depth for both to avoid errors
control_images = [depth_image, depth_image]
conditioning_scales = [0.0, controlnet_conditioning_scale]
pipe_kwargs["control_image"] = control_images
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
else:
print("Using Depth ControlNet only")
pipe_kwargs["control_image"] = depth_image
pipe_kwargs["controlnet_conditioning_scale"] = controlnet_conditioning_scale
# Generate
scheduler_name = "LCM" if self.use_lcm else "DPM++"
print(f"Generating with {scheduler_name}: Steps={num_inference_steps}, CFG={guidance_scale}, Strength={strength}")
result = self.pipe(**pipe_kwargs)
return result.images[0]
# Initialize converter
print("Initializing RetroArt Converter...")
converter = RetroArtConverter()
@spaces.GPU
def process_image(
image,
prompt,
negative_prompt,
steps,
guidance_scale,
controlnet_scale,
lora_scale,
identity_preservation,
strength
):
if image is None:
return None
try:
result = converter.generate_retro_art(
input_image=image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_scale,
lora_scale=lora_scale,
identity_preservation=identity_preservation,
strength=strength
)
return result
except Exception as e:
print(f"Error: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"Generation failed: {str(e)}")
# Gradio UI
with gr.Blocks(title="RetroArt Converter - Img2Img", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# ๐ฎ RetroArt Converter (Img2Img + InstantID)
Convert images into retro pixel art style using img2img with face preservation!
**โจ Features:**
- ๐ผ๏ธ **True Img2Img**: Transforms your image while preserving structure
- ๐ค **InstantID**: Facial keypoint detection with age/gender detection
- ๐จ Custom pixel art LORA with trigger word: `{TRIGGER_WORD}`
- ๐๏ธ **Zoe Depth**: Better depth map quality
- โก **{'LCM' if USE_LCM else 'DPM++ 2M Karras'}** scheduler
- ๐ Optimized resolutions: 896x1152 / 832x1216
- ๐ฏ CLIP Skip 2 for better style
""")
# Model status
if converter.models_loaded:
status_text = "**๐ฆ Loaded Models:**\n"
status_text += f"- Custom Checkpoint (Horizon): {'โ Loaded' if converter.models_loaded['custom_checkpoint'] else 'โ Using SDXL base'}\n"
status_text += f"- LORA (RetroArt): {'โ Loaded' if converter.models_loaded['lora'] else 'โ Disabled'}\n"
status_text += f"- InstantID: {'โ Loaded' if converter.models_loaded['instantid'] else 'โ Disabled'}\n"
status_text += f"- Zoe Depth: {'โ Loaded' if converter.models_loaded['zoe_depth'] else 'โ Fallback'}\n"
gr.Markdown(status_text)
scheduler_info = f"""
**โ๏ธ Configuration:**
- Pipeline: **Img2Img** (better structure preservation)
- Scheduler: **{'LCM' if USE_LCM else 'DPM++ 2M Karras'}**
- Recommended Steps: **{12 if USE_LCM else '30-50'}**
- Recommended CFG: **{1.0 if USE_LCM else '7.0-8.0'}**
- CLIP Skip: **2**
- LORA Trigger: `{TRIGGER_WORD}` (auto-added)
- Face Detection: **Age & Gender detection enabled**
"""
gr.Markdown(scheduler_info)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Textbox(
label="Prompt (trigger word auto-added)",
value=" ",
lines=3,
info=f"'{TRIGGER_WORD}' will be automatically added"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=" ",
lines=2
)
with gr.Accordion(f"โก {'LCM' if USE_LCM else 'DPM++'} Settings", open=True):
steps = gr.Slider(
minimum=4,
maximum=50,
value=12 if USE_LCM else 30,
step=1,
label=f"Inference Steps ({'LCM works with 12' if USE_LCM else 'DPM++ uses 30-50'})"
)
guidance_scale = gr.Slider(
minimum=0.5,
maximum=15.0,
value=1.5 if USE_LCM else 7.5,
step=0.1,
label=f"Guidance Scale (CFG) - {'LCM uses 1.0-2.0' if USE_LCM else 'DPM++ uses 7-8'}"
)
strength = gr.Slider(
minimum=0.3,
maximum=0.95,
value=0.50,
step=0.05,
label="Img2Img Strength (how much to transform)"
)
controlnet_scale = gr.Slider(
minimum=0.3,
maximum=1.2,
value=0.75,
step=0.05,
label="Zoe Depth ControlNet Scale"
)
lora_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.25,
step=0.05,
label="RetroArt LORA Scale"
)
with gr.Accordion("๐ค InstantID Settings (for portraits)", open=False):
identity_preservation = gr.Slider(
minimum=0,
maximum=1.5,
value=1.0,
step=0.1,
label="Identity/Keypoint Preservation"
)
generate_btn = gr.Button("๐จ Generate Retro Art", variant="primary", size="lg")
with gr.Column():
output_image = gr.Image(label="Retro Art Output")
gr.Markdown(f"""
### ๐ก Tips for Best Results:
**For Img2Img:**
- โ
**Strength 0.7-0.8**: Good balance of transformation and structure
- โ
**Strength 0.5-0.6**: More faithful to original
- โ
**Strength 0.8-0.9**: More creative/stylized
**For {'LCM' if USE_LCM else 'DPM++'}:**
- {'โ
Use **12 steps** (optimized for speed)' if USE_LCM else 'โ
Use **30-50 steps** (better quality)'}
- {'โ
Keep CFG at **1.0-2.0**' if USE_LCM else 'โ
Keep CFG at **7.0-8.0**'}
- โ
LORA trigger word is **auto-added**
- โ
Resolution auto-optimized to 896x1152 or 832x1216
**For Portraits:**
- The system detects **age and gender** automatically
- Facial **keypoints** are used for better face preservation
- Adjust Identity Preservation: lower = more stylized, higher = more realistic face
**For Quality:**
- Use high-resolution input images
- Be specific in prompts: "16-bit game character" vs "character"
- Adjust Depth scale: lower = more creative, higher = more faithful depth
**For Style:**
- Increase LORA scale (1.0-1.5) for stronger pixel art effect
- Try prompts like: "SNES style", "16-bit RPG", "Game Boy advance style"
""")
generate_btn.click(
fn=process_image,
inputs=[
input_image, prompt, negative_prompt, steps, guidance_scale,
controlnet_scale, lora_scale, identity_preservation, strength
],
outputs=[output_image]
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True
) |