Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,19 +15,35 @@ import cv2
|
|
| 15 |
from transformers import pipeline as transformers_pipeline
|
| 16 |
from huggingface_hub import hf_hub_download
|
| 17 |
import os
|
|
|
|
| 18 |
|
| 19 |
# Configuration
|
| 20 |
MODEL_REPO = "primerz/pixagram"
|
| 21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
class RetroArtConverter:
|
| 28 |
def __init__(self):
|
| 29 |
-
self.
|
| 30 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# Initialize face analysis for InstantID (optional)
|
| 33 |
print("Loading face analysis model...")
|
|
@@ -78,7 +94,8 @@ class RetroArtConverter:
|
|
| 78 |
print("Loading depth estimator...")
|
| 79 |
self.depth_estimator = transformers_pipeline(
|
| 80 |
'depth-estimation',
|
| 81 |
-
model="Intel/dpt-hybrid-midas"
|
|
|
|
| 82 |
)
|
| 83 |
|
| 84 |
# Load SDXL checkpoint from HuggingFace Hub
|
|
@@ -108,7 +125,7 @@ class RetroArtConverter:
|
|
| 108 |
use_safetensors=True
|
| 109 |
).to(self.device)
|
| 110 |
|
| 111 |
-
# Load LORA from HuggingFace Hub
|
| 112 |
print("Loading LORA (retroart) from HuggingFace Hub...")
|
| 113 |
try:
|
| 114 |
lora_path = hf_hub_download(
|
|
@@ -126,19 +143,25 @@ class RetroArtConverter:
|
|
| 126 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 127 |
self.pipe.scheduler.config
|
| 128 |
)
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
self.pipe.enable_vae_slicing()
|
| 131 |
|
| 132 |
# Enable attention slicing for memory efficiency
|
| 133 |
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 134 |
|
| 135 |
-
if
|
|
|
|
| 136 |
try:
|
| 137 |
self.pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
| 138 |
except Exception as e:
|
| 139 |
-
print(f"xformers not available: {e}")
|
| 140 |
|
| 141 |
-
|
|
|
|
| 142 |
|
| 143 |
def get_depth_map(self, image):
|
| 144 |
"""Generate depth map from input image"""
|
|
@@ -199,6 +222,9 @@ class RetroArtConverter:
|
|
| 199 |
):
|
| 200 |
"""Main generation function"""
|
| 201 |
|
|
|
|
|
|
|
|
|
|
| 202 |
# Resize image maintaining aspect ratio
|
| 203 |
original_width, original_height = input_image.size
|
| 204 |
target_width, target_height = self.calculate_target_size(original_width, original_height)
|
|
@@ -244,7 +270,8 @@ class RetroArtConverter:
|
|
| 244 |
print("Initializing RetroArt Converter...")
|
| 245 |
converter = RetroArtConverter()
|
| 246 |
|
| 247 |
-
# Gradio interface
|
|
|
|
| 248 |
def process_image(
|
| 249 |
image,
|
| 250 |
prompt,
|
|
|
|
| 15 |
from transformers import pipeline as transformers_pipeline
|
| 16 |
from huggingface_hub import hf_hub_download
|
| 17 |
import os
|
| 18 |
+
import spaces
|
| 19 |
|
| 20 |
# Configuration
|
| 21 |
MODEL_REPO = "primerz/pixagram"
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Note: For ZeroGPU, device detection happens dynamically
|
| 24 |
+
# We'll set device inside GPU-decorated functions
|
| 25 |
+
print("Using ZeroGPU - GPU will be allocated on-demand")
|
| 26 |
|
| 27 |
class RetroArtConverter:
|
| 28 |
def __init__(self):
|
| 29 |
+
self.models_loaded = False
|
| 30 |
+
self.device = None
|
| 31 |
+
self.dtype = None
|
| 32 |
+
self.face_detection_enabled = False
|
| 33 |
+
print("RetroArtConverter initialized - models will load on first generation")
|
| 34 |
+
|
| 35 |
+
def _initialize_models(self):
|
| 36 |
+
"""Lazy model initialization - called on first generation when GPU is available"""
|
| 37 |
+
if self.models_loaded:
|
| 38 |
+
return
|
| 39 |
+
|
| 40 |
+
print("Initializing models...")
|
| 41 |
+
print(f"Loading models from: {MODEL_REPO}")
|
| 42 |
+
|
| 43 |
+
# Set device (will be cuda when called from GPU-decorated function)
|
| 44 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 45 |
+
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 46 |
+
print(f"Using device: {self.device}")
|
| 47 |
|
| 48 |
# Initialize face analysis for InstantID (optional)
|
| 49 |
print("Loading face analysis model...")
|
|
|
|
| 94 |
print("Loading depth estimator...")
|
| 95 |
self.depth_estimator = transformers_pipeline(
|
| 96 |
'depth-estimation',
|
| 97 |
+
model="Intel/dpt-hybrid-midas",
|
| 98 |
+
device=self.device if self.device == "cuda" else -1
|
| 99 |
)
|
| 100 |
|
| 101 |
# Load SDXL checkpoint from HuggingFace Hub
|
|
|
|
| 125 |
use_safetensors=True
|
| 126 |
).to(self.device)
|
| 127 |
|
| 128 |
+
# Load LORA from HuggingFace Hub (requires PEFT)
|
| 129 |
print("Loading LORA (retroart) from HuggingFace Hub...")
|
| 130 |
try:
|
| 131 |
lora_path = hf_hub_download(
|
|
|
|
| 143 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 144 |
self.pipe.scheduler.config
|
| 145 |
)
|
| 146 |
+
|
| 147 |
+
# For ZeroGPU, we don't use model_cpu_offload
|
| 148 |
+
# self.pipe.enable_model_cpu_offload()
|
| 149 |
+
|
| 150 |
self.pipe.enable_vae_slicing()
|
| 151 |
|
| 152 |
# Enable attention slicing for memory efficiency
|
| 153 |
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 154 |
|
| 155 |
+
# Try to enable xformers if available (only works on GPU)
|
| 156 |
+
if self.device == "cuda":
|
| 157 |
try:
|
| 158 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 159 |
+
print("✓ xformers enabled")
|
| 160 |
except Exception as e:
|
| 161 |
+
print(f"⚠️ xformers not available: {e}")
|
| 162 |
|
| 163 |
+
self.models_loaded = True
|
| 164 |
+
print("✓ Model initialization complete!")
|
| 165 |
|
| 166 |
def get_depth_map(self, image):
|
| 167 |
"""Generate depth map from input image"""
|
|
|
|
| 222 |
):
|
| 223 |
"""Main generation function"""
|
| 224 |
|
| 225 |
+
# Initialize models on first run (lazy loading for ZeroGPU)
|
| 226 |
+
self._initialize_models()
|
| 227 |
+
|
| 228 |
# Resize image maintaining aspect ratio
|
| 229 |
original_width, original_height = input_image.size
|
| 230 |
target_width, target_height = self.calculate_target_size(original_width, original_height)
|
|
|
|
| 270 |
print("Initializing RetroArt Converter...")
|
| 271 |
converter = RetroArtConverter()
|
| 272 |
|
| 273 |
+
# Gradio interface with ZeroGPU support
|
| 274 |
+
@spaces.GPU
|
| 275 |
def process_image(
|
| 276 |
image,
|
| 277 |
prompt,
|