Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,13 +13,16 @@ from PIL import Image
|
|
| 13 |
import numpy as np
|
| 14 |
import cv2
|
| 15 |
from transformers import pipeline as transformers_pipeline
|
|
|
|
| 16 |
import os
|
| 17 |
|
| 18 |
-
#
|
|
|
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 21 |
|
| 22 |
print(f"Using device: {device}")
|
|
|
|
| 23 |
|
| 24 |
class RetroArtConverter:
|
| 25 |
def __init__(self):
|
|
@@ -42,16 +45,22 @@ class RetroArtConverter:
|
|
| 42 |
torch_dtype=self.dtype
|
| 43 |
).to(self.device)
|
| 44 |
|
| 45 |
-
# Load custom VAE
|
| 46 |
-
print("Loading custom VAE (pixelate)...")
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
self.vae = AutoencoderKL.from_single_file(
|
| 50 |
vae_path,
|
| 51 |
torch_dtype=self.dtype
|
| 52 |
).to(self.device)
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
self.vae = AutoencoderKL.from_pretrained(
|
| 56 |
"madebyollin/sdxl-vae-fp16-fix",
|
| 57 |
torch_dtype=self.dtype
|
|
@@ -64,11 +73,14 @@ class RetroArtConverter:
|
|
| 64 |
model="Intel/dpt-hybrid-midas"
|
| 65 |
)
|
| 66 |
|
| 67 |
-
# Load SDXL
|
| 68 |
-
print("Loading SDXL
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
| 72 |
self.pipe = StableDiffusionXLControlNetPipeline.from_single_file(
|
| 73 |
model_path,
|
| 74 |
controlnet=self.controlnet_depth,
|
|
@@ -76,8 +88,10 @@ class RetroArtConverter:
|
|
| 76 |
torch_dtype=self.dtype,
|
| 77 |
use_safetensors=True
|
| 78 |
).to(self.device)
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 82 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 83 |
controlnet=self.controlnet_depth,
|
|
@@ -86,14 +100,19 @@ class RetroArtConverter:
|
|
| 86 |
use_safetensors=True
|
| 87 |
).to(self.device)
|
| 88 |
|
| 89 |
-
# Load
|
| 90 |
-
print("Loading LORA (retroart)...")
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
self.pipe.load_lora_weights(lora_path)
|
| 94 |
-
print("LORA loaded successfully")
|
| 95 |
-
|
| 96 |
-
print("Warning:
|
|
|
|
| 97 |
|
| 98 |
# Optimize pipeline
|
| 99 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
|
@@ -331,4 +350,4 @@ if __name__ == "__main__":
|
|
| 331 |
server_port=7860,
|
| 332 |
share=False,
|
| 333 |
show_api=True # Enable API
|
| 334 |
-
)
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
import cv2
|
| 15 |
from transformers import pipeline as transformers_pipeline
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
import os
|
| 18 |
|
| 19 |
+
# Configuration
|
| 20 |
+
MODEL_REPO = "primerz/pixagram"
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 23 |
|
| 24 |
print(f"Using device: {device}")
|
| 25 |
+
print(f"Loading models from: {MODEL_REPO}")
|
| 26 |
|
| 27 |
class RetroArtConverter:
|
| 28 |
def __init__(self):
|
|
|
|
| 45 |
torch_dtype=self.dtype
|
| 46 |
).to(self.device)
|
| 47 |
|
| 48 |
+
# Load custom VAE from HuggingFace Hub
|
| 49 |
+
print("Loading custom VAE (pixelate) from HuggingFace Hub...")
|
| 50 |
+
try:
|
| 51 |
+
vae_path = hf_hub_download(
|
| 52 |
+
repo_id=MODEL_REPO,
|
| 53 |
+
filename="pixelate.safetensors",
|
| 54 |
+
repo_type="model"
|
| 55 |
+
)
|
| 56 |
self.vae = AutoencoderKL.from_single_file(
|
| 57 |
vae_path,
|
| 58 |
torch_dtype=self.dtype
|
| 59 |
).to(self.device)
|
| 60 |
+
print("✓ Custom VAE loaded successfully")
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Warning: Could not load custom VAE: {e}")
|
| 63 |
+
print("Using default SDXL VAE")
|
| 64 |
self.vae = AutoencoderKL.from_pretrained(
|
| 65 |
"madebyollin/sdxl-vae-fp16-fix",
|
| 66 |
torch_dtype=self.dtype
|
|
|
|
| 73 |
model="Intel/dpt-hybrid-midas"
|
| 74 |
)
|
| 75 |
|
| 76 |
+
# Load SDXL checkpoint from HuggingFace Hub
|
| 77 |
+
print("Loading SDXL checkpoint (horizon) from HuggingFace Hub...")
|
| 78 |
+
try:
|
| 79 |
+
model_path = hf_hub_download(
|
| 80 |
+
repo_id=MODEL_REPO,
|
| 81 |
+
filename="horizon.safetensors",
|
| 82 |
+
repo_type="model"
|
| 83 |
+
)
|
| 84 |
self.pipe = StableDiffusionXLControlNetPipeline.from_single_file(
|
| 85 |
model_path,
|
| 86 |
controlnet=self.controlnet_depth,
|
|
|
|
| 88 |
torch_dtype=self.dtype,
|
| 89 |
use_safetensors=True
|
| 90 |
).to(self.device)
|
| 91 |
+
print("✓ Custom checkpoint loaded successfully")
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"Warning: Could not load custom checkpoint: {e}")
|
| 94 |
+
print("Using default SDXL")
|
| 95 |
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 96 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 97 |
controlnet=self.controlnet_depth,
|
|
|
|
| 100 |
use_safetensors=True
|
| 101 |
).to(self.device)
|
| 102 |
|
| 103 |
+
# Load LORA from HuggingFace Hub
|
| 104 |
+
print("Loading LORA (retroart) from HuggingFace Hub...")
|
| 105 |
+
try:
|
| 106 |
+
lora_path = hf_hub_download(
|
| 107 |
+
repo_id=MODEL_REPO,
|
| 108 |
+
filename="retroart.safetensors",
|
| 109 |
+
repo_type="model"
|
| 110 |
+
)
|
| 111 |
self.pipe.load_lora_weights(lora_path)
|
| 112 |
+
print("✓ LORA loaded successfully")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Warning: Could not load LORA: {e}")
|
| 115 |
+
print("Running without LORA")
|
| 116 |
|
| 117 |
# Optimize pipeline
|
| 118 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
|
|
|
| 350 |
server_port=7860,
|
| 351 |
share=False,
|
| 352 |
show_api=True # Enable API
|
| 353 |
+
)
|