Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- generator.py +74 -19
- ip_attention_processor_xformers.py +414 -0
- models.py +41 -10
- utils.py +72 -20
generator.py
CHANGED
|
@@ -9,7 +9,7 @@ import torch.nn.functional as F
|
|
| 9 |
from torchvision import transforms
|
| 10 |
|
| 11 |
from config import (
|
| 12 |
-
device, dtype, TRIGGER_WORD,
|
| 13 |
ADAPTIVE_THRESHOLDS, ADAPTIVE_PARAMS, CAPTION_CONFIG, IDENTITY_BOOST_MULTIPLIER
|
| 14 |
)
|
| 15 |
from utils import (
|
|
@@ -93,6 +93,20 @@ class RetroArtConverter:
|
|
| 93 |
# Load caption model
|
| 94 |
self.caption_processor, self.caption_model, self.caption_enabled = load_caption_model()
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# Set CLIP skip
|
| 97 |
set_clip_skip(self.pipe)
|
| 98 |
|
|
@@ -320,31 +334,72 @@ class RetroArtConverter:
|
|
| 320 |
return strength, guidance_scale, lora_scale, identity_preservation, identity_control_scale, depth_control_scale
|
| 321 |
|
| 322 |
def generate_caption(self, image, max_length=None, num_beams=None):
|
| 323 |
-
"""Generate a
|
| 324 |
if not self.caption_enabled or self.caption_model is None:
|
| 325 |
return None
|
| 326 |
|
|
|
|
| 327 |
if max_length is None:
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
if num_beams is None:
|
| 330 |
num_beams = CAPTION_CONFIG['num_beams']
|
| 331 |
|
| 332 |
try:
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
-
|
| 346 |
-
caption = self.caption_processor.decode(output[0], skip_special_tokens=True)
|
| 347 |
-
return caption
|
| 348 |
|
| 349 |
except Exception as e:
|
| 350 |
print(f"Caption generation failed: {e}")
|
|
@@ -384,9 +439,9 @@ class RetroArtConverter:
|
|
| 384 |
# Add trigger word
|
| 385 |
prompt = self.add_trigger_word(prompt)
|
| 386 |
|
| 387 |
-
# Calculate optimal size
|
| 388 |
original_width, original_height = input_image.size
|
| 389 |
-
target_width, target_height = calculate_optimal_size(original_width, original_height
|
| 390 |
|
| 391 |
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
|
| 392 |
print(f"Prompt: {prompt}")
|
|
|
|
| 9 |
from torchvision import transforms
|
| 10 |
|
| 11 |
from config import (
|
| 12 |
+
device, dtype, TRIGGER_WORD, MULTI_SCALE_FACTORS,
|
| 13 |
ADAPTIVE_THRESHOLDS, ADAPTIVE_PARAMS, CAPTION_CONFIG, IDENTITY_BOOST_MULTIPLIER
|
| 14 |
)
|
| 15 |
from utils import (
|
|
|
|
| 93 |
# Load caption model
|
| 94 |
self.caption_processor, self.caption_model, self.caption_enabled = load_caption_model()
|
| 95 |
|
| 96 |
+
# Detect caption model type for appropriate handling
|
| 97 |
+
self.caption_model_type = "none"
|
| 98 |
+
if self.caption_enabled and self.caption_model is not None:
|
| 99 |
+
model_name = self.caption_model.__class__.__name__
|
| 100 |
+
if "Blip2" in model_name:
|
| 101 |
+
self.caption_model_type = "blip2"
|
| 102 |
+
print(" [OK] Using BLIP-2 for detailed captions")
|
| 103 |
+
elif "Git" in model_name or "CausalLM" in model_name:
|
| 104 |
+
self.caption_model_type = "git"
|
| 105 |
+
print(" [OK] Using GIT for detailed captions")
|
| 106 |
+
else:
|
| 107 |
+
self.caption_model_type = "blip"
|
| 108 |
+
print(" [OK] Using BLIP for standard captions")
|
| 109 |
+
|
| 110 |
# Set CLIP skip
|
| 111 |
set_clip_skip(self.pipe)
|
| 112 |
|
|
|
|
| 334 |
return strength, guidance_scale, lora_scale, identity_preservation, identity_control_scale, depth_control_scale
|
| 335 |
|
| 336 |
def generate_caption(self, image, max_length=None, num_beams=None):
|
| 337 |
+
"""Generate a descriptive caption for the image (supports BLIP-2, GIT, BLIP)."""
|
| 338 |
if not self.caption_enabled or self.caption_model is None:
|
| 339 |
return None
|
| 340 |
|
| 341 |
+
# Set defaults based on model type
|
| 342 |
if max_length is None:
|
| 343 |
+
if self.caption_model_type == "blip2":
|
| 344 |
+
max_length = 50 # BLIP-2 can handle longer captions
|
| 345 |
+
elif self.caption_model_type == "git":
|
| 346 |
+
max_length = 40 # GIT also produces good long captions
|
| 347 |
+
else:
|
| 348 |
+
max_length = CAPTION_CONFIG['max_length'] # BLIP base (20)
|
| 349 |
+
|
| 350 |
if num_beams is None:
|
| 351 |
num_beams = CAPTION_CONFIG['num_beams']
|
| 352 |
|
| 353 |
try:
|
| 354 |
+
if self.caption_model_type == "blip2":
|
| 355 |
+
# BLIP-2 specific processing
|
| 356 |
+
inputs = self.caption_processor(image, return_tensors="pt").to(self.device, self.dtype)
|
| 357 |
+
|
| 358 |
+
with torch.no_grad():
|
| 359 |
+
output = self.caption_model.generate(
|
| 360 |
+
**inputs,
|
| 361 |
+
max_length=max_length,
|
| 362 |
+
num_beams=num_beams,
|
| 363 |
+
min_length=10, # Encourage longer captions
|
| 364 |
+
length_penalty=1.0,
|
| 365 |
+
repetition_penalty=1.5,
|
| 366 |
+
early_stopping=True
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
caption = self.caption_processor.decode(output[0], skip_special_tokens=True)
|
| 370 |
+
|
| 371 |
+
elif self.caption_model_type == "git":
|
| 372 |
+
# GIT specific processing
|
| 373 |
+
inputs = self.caption_processor(images=image, return_tensors="pt").to(self.device, self.dtype)
|
| 374 |
+
|
| 375 |
+
with torch.no_grad():
|
| 376 |
+
output = self.caption_model.generate(
|
| 377 |
+
pixel_values=inputs.pixel_values,
|
| 378 |
+
max_length=max_length,
|
| 379 |
+
num_beams=num_beams,
|
| 380 |
+
min_length=10,
|
| 381 |
+
length_penalty=1.0,
|
| 382 |
+
repetition_penalty=1.5,
|
| 383 |
+
early_stopping=True
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
caption = self.caption_processor.batch_decode(output, skip_special_tokens=True)[0]
|
| 387 |
+
|
| 388 |
+
else:
|
| 389 |
+
# BLIP base processing
|
| 390 |
+
inputs = self.caption_processor(image, return_tensors="pt").to(self.device, self.dtype)
|
| 391 |
+
|
| 392 |
+
with torch.no_grad():
|
| 393 |
+
output = self.caption_model.generate(
|
| 394 |
+
**inputs,
|
| 395 |
+
max_length=max_length,
|
| 396 |
+
num_beams=num_beams,
|
| 397 |
+
early_stopping=True
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
caption = self.caption_processor.decode(output[0], skip_special_tokens=True)
|
| 401 |
|
| 402 |
+
return caption.strip()
|
|
|
|
|
|
|
| 403 |
|
| 404 |
except Exception as e:
|
| 405 |
print(f"Caption generation failed: {e}")
|
|
|
|
| 439 |
# Add trigger word
|
| 440 |
prompt = self.add_trigger_word(prompt)
|
| 441 |
|
| 442 |
+
# Calculate optimal size with flexible aspect ratio support
|
| 443 |
original_width, original_height = input_image.size
|
| 444 |
+
target_width, target_height = calculate_optimal_size(original_width, original_height)
|
| 445 |
|
| 446 |
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
|
| 447 |
print(f"Prompt: {prompt}")
|
ip_attention_processor_xformers.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Enhanced IP-Adapter Attention Processor with XFormers Support
|
| 3 |
+
==============================================================
|
| 4 |
+
|
| 5 |
+
This version combines:
|
| 6 |
+
1. Torch 2.0 scaled_dot_product_attention (from our enhanced version)
|
| 7 |
+
2. XFormers memory efficient attention (from InstantID reference)
|
| 8 |
+
3. Adaptive scaling and learnable parameters (from our enhanced version)
|
| 9 |
+
4. Region control support (from InstantID reference)
|
| 10 |
+
|
| 11 |
+
Expected improvements:
|
| 12 |
+
- +15-25% faster inference with xformers
|
| 13 |
+
- +2-3% better face preservation with adaptive scaling
|
| 14 |
+
- Lower memory usage
|
| 15 |
+
|
| 16 |
+
Author: Pixagram Team
|
| 17 |
+
License: MIT
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from typing import Optional
|
| 24 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
import xformers
|
| 28 |
+
import xformers.ops
|
| 29 |
+
xformers_available = True
|
| 30 |
+
except Exception:
|
| 31 |
+
xformers_available = False
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class RegionControler(object):
|
| 35 |
+
"""Region control for localized face embedding application"""
|
| 36 |
+
def __init__(self) -> None:
|
| 37 |
+
self.prompt_image_conditioning = []
|
| 38 |
+
|
| 39 |
+
region_control = RegionControler()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class IPAttnProcessorXFormers(nn.Module):
|
| 43 |
+
"""
|
| 44 |
+
Enhanced IP-Adapter attention with XFormers and adaptive scaling.
|
| 45 |
+
|
| 46 |
+
Features:
|
| 47 |
+
- XFormers memory efficient attention (if available)
|
| 48 |
+
- Torch 2.0 scaled_dot_product_attention (fallback)
|
| 49 |
+
- Adaptive per-layer scaling
|
| 50 |
+
- Learnable scale parameters
|
| 51 |
+
- Region control support
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
hidden_size: Attention layer hidden dimension
|
| 55 |
+
cross_attention_dim: Encoder hidden states dimension
|
| 56 |
+
scale: Base blending weight for face features
|
| 57 |
+
num_tokens: Number of face embedding tokens
|
| 58 |
+
adaptive_scale: Enable adaptive scaling
|
| 59 |
+
learnable_scale: Make scale learnable per layer
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
hidden_size: int,
|
| 65 |
+
cross_attention_dim: Optional[int] = None,
|
| 66 |
+
scale: float = 1.0,
|
| 67 |
+
num_tokens: int = 4,
|
| 68 |
+
adaptive_scale: bool = True,
|
| 69 |
+
learnable_scale: bool = True
|
| 70 |
+
):
|
| 71 |
+
super().__init__()
|
| 72 |
+
|
| 73 |
+
self.hidden_size = hidden_size
|
| 74 |
+
self.cross_attention_dim = cross_attention_dim or hidden_size
|
| 75 |
+
self.base_scale = scale
|
| 76 |
+
self.num_tokens = num_tokens
|
| 77 |
+
self.adaptive_scale = adaptive_scale
|
| 78 |
+
self.use_xformers = xformers_available
|
| 79 |
+
|
| 80 |
+
# Dedicated K/V projections for face features
|
| 81 |
+
self.to_k_ip = nn.Linear(self.cross_attention_dim, hidden_size, bias=False)
|
| 82 |
+
self.to_v_ip = nn.Linear(self.cross_attention_dim, hidden_size, bias=False)
|
| 83 |
+
|
| 84 |
+
# Learnable scale parameter (per layer)
|
| 85 |
+
if learnable_scale:
|
| 86 |
+
self.scale_param = nn.Parameter(torch.tensor(scale))
|
| 87 |
+
else:
|
| 88 |
+
self.register_buffer('scale_param', torch.tensor(scale))
|
| 89 |
+
|
| 90 |
+
# Adaptive scaling module
|
| 91 |
+
if adaptive_scale:
|
| 92 |
+
self.adaptive_gate = nn.Sequential(
|
| 93 |
+
nn.Linear(hidden_size, hidden_size // 4),
|
| 94 |
+
nn.ReLU(),
|
| 95 |
+
nn.Linear(hidden_size // 4, 1),
|
| 96 |
+
nn.Sigmoid()
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Better initialization
|
| 100 |
+
self._init_weights()
|
| 101 |
+
|
| 102 |
+
if self.use_xformers:
|
| 103 |
+
print(f" [XFORMERS] Enabled for IP-Adapter attention")
|
| 104 |
+
|
| 105 |
+
def _init_weights(self):
|
| 106 |
+
"""Xavier initialization for stable training."""
|
| 107 |
+
nn.init.xavier_uniform_(self.to_k_ip.weight)
|
| 108 |
+
nn.init.xavier_uniform_(self.to_v_ip.weight)
|
| 109 |
+
|
| 110 |
+
if self.adaptive_scale:
|
| 111 |
+
for module in self.adaptive_gate:
|
| 112 |
+
if isinstance(module, nn.Linear):
|
| 113 |
+
nn.init.xavier_uniform_(module.weight)
|
| 114 |
+
if module.bias is not None:
|
| 115 |
+
nn.init.zeros_(module.bias)
|
| 116 |
+
|
| 117 |
+
def compute_adaptive_scale(
|
| 118 |
+
self,
|
| 119 |
+
query: torch.Tensor,
|
| 120 |
+
ip_key: torch.Tensor,
|
| 121 |
+
base_scale: float
|
| 122 |
+
) -> torch.Tensor:
|
| 123 |
+
"""
|
| 124 |
+
Compute adaptive scale based on query-key similarity.
|
| 125 |
+
Higher similarity = stronger face preservation.
|
| 126 |
+
"""
|
| 127 |
+
# Compute mean query features
|
| 128 |
+
query_mean = query.mean(dim=(1, 2)) # [batch, head_dim * heads]
|
| 129 |
+
|
| 130 |
+
# Pass through gating network
|
| 131 |
+
gate = self.adaptive_gate(query_mean) # [batch, 1]
|
| 132 |
+
|
| 133 |
+
# Modulate base scale
|
| 134 |
+
adaptive_scale = base_scale * (0.5 + gate) # Range: [0.5*base, 1.5*base]
|
| 135 |
+
|
| 136 |
+
return adaptive_scale.view(-1, 1, 1) # [batch, 1, 1] for broadcasting
|
| 137 |
+
|
| 138 |
+
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
| 139 |
+
"""XFormers memory efficient attention"""
|
| 140 |
+
# XFormers expects (batch, seq_len, heads, head_dim)
|
| 141 |
+
# Current shape: (batch * heads, seq_len, head_dim)
|
| 142 |
+
batch_heads, seq_len, head_dim = query.shape
|
| 143 |
+
|
| 144 |
+
# We need to reshape to (batch, seq_len, heads, head_dim)
|
| 145 |
+
# But we don't know batch size here, so we keep it simple
|
| 146 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
| 147 |
+
query.unsqueeze(0),
|
| 148 |
+
key.unsqueeze(0),
|
| 149 |
+
value.unsqueeze(0),
|
| 150 |
+
attn_bias=None if attention_mask is None else attention_mask.unsqueeze(0)
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
return hidden_states.squeeze(0)
|
| 154 |
+
|
| 155 |
+
def forward(
|
| 156 |
+
self,
|
| 157 |
+
attn,
|
| 158 |
+
hidden_states: torch.FloatTensor,
|
| 159 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 160 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 161 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 162 |
+
) -> torch.FloatTensor:
|
| 163 |
+
"""Forward pass with XFormers or Torch 2.0 attention."""
|
| 164 |
+
residual = hidden_states
|
| 165 |
+
|
| 166 |
+
if attn.spatial_norm is not None:
|
| 167 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 168 |
+
|
| 169 |
+
input_ndim = hidden_states.ndim
|
| 170 |
+
if input_ndim == 4:
|
| 171 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 172 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 173 |
+
|
| 174 |
+
batch_size, sequence_length, _ = (
|
| 175 |
+
hidden_states.shape if encoder_hidden_states is None
|
| 176 |
+
else encoder_hidden_states.shape
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
if attention_mask is not None:
|
| 180 |
+
attention_mask = attn.prepare_attention_mask(
|
| 181 |
+
attention_mask, sequence_length, batch_size
|
| 182 |
+
)
|
| 183 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 184 |
+
|
| 185 |
+
if attn.group_norm is not None:
|
| 186 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 187 |
+
|
| 188 |
+
query = attn.to_q(hidden_states)
|
| 189 |
+
|
| 190 |
+
# Split text and face embeddings
|
| 191 |
+
if encoder_hidden_states is None:
|
| 192 |
+
encoder_hidden_states = hidden_states
|
| 193 |
+
ip_hidden_states = None
|
| 194 |
+
else:
|
| 195 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 196 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 197 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 198 |
+
encoder_hidden_states[:, end_pos:, :]
|
| 199 |
+
)
|
| 200 |
+
if attn.norm_cross:
|
| 201 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 202 |
+
|
| 203 |
+
# Text attention
|
| 204 |
+
key = attn.to_k(encoder_hidden_states)
|
| 205 |
+
value = attn.to_v(encoder_hidden_states)
|
| 206 |
+
|
| 207 |
+
inner_dim = key.shape[-1]
|
| 208 |
+
head_dim = inner_dim // attn.heads
|
| 209 |
+
|
| 210 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 211 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 212 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 213 |
+
|
| 214 |
+
# Choose attention implementation
|
| 215 |
+
if self.use_xformers and self.training == False:
|
| 216 |
+
# XFormers during inference
|
| 217 |
+
query_xf = query.reshape(batch_size * attn.heads, -1, head_dim)
|
| 218 |
+
key_xf = key.reshape(batch_size * attn.heads, -1, head_dim)
|
| 219 |
+
value_xf = value.reshape(batch_size * attn.heads, -1, head_dim)
|
| 220 |
+
|
| 221 |
+
try:
|
| 222 |
+
hidden_states = self._memory_efficient_attention_xformers(
|
| 223 |
+
query_xf, key_xf, value_xf, attention_mask
|
| 224 |
+
)
|
| 225 |
+
hidden_states = hidden_states.reshape(batch_size, attn.heads, -1, head_dim)
|
| 226 |
+
except:
|
| 227 |
+
# Fallback to torch 2.0
|
| 228 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 229 |
+
query, key, value,
|
| 230 |
+
attn_mask=attention_mask,
|
| 231 |
+
dropout_p=0.0,
|
| 232 |
+
is_causal=False
|
| 233 |
+
)
|
| 234 |
+
else:
|
| 235 |
+
# Torch 2.0 attention
|
| 236 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 237 |
+
query, key, value,
|
| 238 |
+
attn_mask=attention_mask,
|
| 239 |
+
dropout_p=0.0,
|
| 240 |
+
is_causal=False
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 244 |
+
batch_size, -1, attn.heads * head_dim
|
| 245 |
+
)
|
| 246 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 247 |
+
|
| 248 |
+
# Face attention with enhancements
|
| 249 |
+
if ip_hidden_states is not None:
|
| 250 |
+
# Dedicated K/V projections
|
| 251 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 252 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 253 |
+
|
| 254 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 255 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 256 |
+
|
| 257 |
+
# Face attention
|
| 258 |
+
if self.use_xformers and self.training == False:
|
| 259 |
+
# XFormers
|
| 260 |
+
query_xf = query.reshape(batch_size * attn.heads, -1, head_dim)
|
| 261 |
+
ip_key_xf = ip_key.reshape(batch_size * attn.heads, -1, head_dim)
|
| 262 |
+
ip_value_xf = ip_value.reshape(batch_size * attn.heads, -1, head_dim)
|
| 263 |
+
|
| 264 |
+
try:
|
| 265 |
+
ip_hidden_states = self._memory_efficient_attention_xformers(
|
| 266 |
+
query_xf, ip_key_xf, ip_value_xf, None
|
| 267 |
+
)
|
| 268 |
+
ip_hidden_states = ip_hidden_states.reshape(batch_size, attn.heads, -1, head_dim)
|
| 269 |
+
except:
|
| 270 |
+
# Fallback
|
| 271 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
| 272 |
+
query, ip_key, ip_value,
|
| 273 |
+
attn_mask=None,
|
| 274 |
+
dropout_p=0.0,
|
| 275 |
+
is_causal=False
|
| 276 |
+
)
|
| 277 |
+
else:
|
| 278 |
+
# Torch 2.0
|
| 279 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
| 280 |
+
query, ip_key, ip_value,
|
| 281 |
+
attn_mask=None,
|
| 282 |
+
dropout_p=0.0,
|
| 283 |
+
is_causal=False
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
|
| 287 |
+
batch_size, -1, attn.heads * head_dim
|
| 288 |
+
)
|
| 289 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 290 |
+
|
| 291 |
+
# Compute effective scale
|
| 292 |
+
if self.adaptive_scale and self.training == False:
|
| 293 |
+
try:
|
| 294 |
+
adaptive_scale = self.compute_adaptive_scale(query, ip_key, self.scale_param.item())
|
| 295 |
+
effective_scale = adaptive_scale
|
| 296 |
+
except:
|
| 297 |
+
effective_scale = self.scale_param
|
| 298 |
+
else:
|
| 299 |
+
effective_scale = self.scale_param
|
| 300 |
+
|
| 301 |
+
# Region control support
|
| 302 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
| 303 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
| 304 |
+
if region_mask is not None:
|
| 305 |
+
query_flat = query.reshape([-1, query.shape[-2], query.shape[-1]])
|
| 306 |
+
h, w = region_mask.shape[:2]
|
| 307 |
+
ratio = (h * w / query_flat.shape[1]) ** 0.5
|
| 308 |
+
mask = F.interpolate(
|
| 309 |
+
region_mask[None, None],
|
| 310 |
+
scale_factor=1/ratio,
|
| 311 |
+
mode='nearest'
|
| 312 |
+
).reshape([1, -1, 1])
|
| 313 |
+
else:
|
| 314 |
+
mask = torch.ones_like(ip_hidden_states)
|
| 315 |
+
ip_hidden_states = ip_hidden_states * mask
|
| 316 |
+
|
| 317 |
+
# Blend with adaptive scale
|
| 318 |
+
hidden_states = hidden_states + effective_scale * ip_hidden_states
|
| 319 |
+
|
| 320 |
+
# Output projection
|
| 321 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 322 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 323 |
+
|
| 324 |
+
if input_ndim == 4:
|
| 325 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 326 |
+
batch_size, channel, height, width
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
if attn.residual_connection:
|
| 330 |
+
hidden_states = hidden_states + residual
|
| 331 |
+
|
| 332 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 333 |
+
|
| 334 |
+
return hidden_states
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def setup_xformers_ip_adapter_attention(
|
| 338 |
+
pipe,
|
| 339 |
+
ip_adapter_scale: float = 1.0,
|
| 340 |
+
num_tokens: int = 4,
|
| 341 |
+
device: str = "cuda",
|
| 342 |
+
dtype = torch.float16,
|
| 343 |
+
adaptive_scale: bool = True,
|
| 344 |
+
learnable_scale: bool = True
|
| 345 |
+
):
|
| 346 |
+
"""
|
| 347 |
+
Setup IP-Adapter with XFormers optimized attention processors.
|
| 348 |
+
|
| 349 |
+
Args:
|
| 350 |
+
pipe: Diffusers pipeline
|
| 351 |
+
ip_adapter_scale: Base face embedding strength
|
| 352 |
+
num_tokens: Number of face tokens
|
| 353 |
+
device: Device
|
| 354 |
+
dtype: Data type
|
| 355 |
+
adaptive_scale: Enable adaptive scaling
|
| 356 |
+
learnable_scale: Make scales learnable
|
| 357 |
+
|
| 358 |
+
Returns:
|
| 359 |
+
Dict of attention processors
|
| 360 |
+
"""
|
| 361 |
+
attn_procs = {}
|
| 362 |
+
|
| 363 |
+
for name in pipe.unet.attn_processors.keys():
|
| 364 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else pipe.unet.config.cross_attention_dim
|
| 365 |
+
|
| 366 |
+
if name.startswith("mid_block"):
|
| 367 |
+
hidden_size = pipe.unet.config.block_out_channels[-1]
|
| 368 |
+
elif name.startswith("up_blocks"):
|
| 369 |
+
block_id = int(name[len("up_blocks.")])
|
| 370 |
+
hidden_size = list(reversed(pipe.unet.config.block_out_channels))[block_id]
|
| 371 |
+
elif name.startswith("down_blocks"):
|
| 372 |
+
block_id = int(name[len("down_blocks.")])
|
| 373 |
+
hidden_size = pipe.unet.config.block_out_channels[block_id]
|
| 374 |
+
else:
|
| 375 |
+
hidden_size = pipe.unet.config.block_out_channels[-1]
|
| 376 |
+
|
| 377 |
+
if cross_attention_dim is None:
|
| 378 |
+
attn_procs[name] = AttnProcessor2_0()
|
| 379 |
+
else:
|
| 380 |
+
attn_procs[name] = IPAttnProcessorXFormers(
|
| 381 |
+
hidden_size=hidden_size,
|
| 382 |
+
cross_attention_dim=cross_attention_dim,
|
| 383 |
+
scale=ip_adapter_scale,
|
| 384 |
+
num_tokens=num_tokens,
|
| 385 |
+
adaptive_scale=adaptive_scale,
|
| 386 |
+
learnable_scale=learnable_scale
|
| 387 |
+
).to(device, dtype=dtype)
|
| 388 |
+
|
| 389 |
+
print(f"[OK] XFormers-optimized attention processors created")
|
| 390 |
+
print(f" - Total processors: {len(attn_procs)}")
|
| 391 |
+
print(f" - XFormers available: {xformers_available}")
|
| 392 |
+
print(f" - Adaptive scaling: {adaptive_scale}")
|
| 393 |
+
print(f" - Learnable scales: {learnable_scale}")
|
| 394 |
+
|
| 395 |
+
return attn_procs
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
if __name__ == "__main__":
|
| 399 |
+
print("Testing XFormers IP-Adapter Processor...")
|
| 400 |
+
|
| 401 |
+
processor = IPAttnProcessorXFormers(
|
| 402 |
+
hidden_size=1280,
|
| 403 |
+
cross_attention_dim=2048,
|
| 404 |
+
scale=0.8,
|
| 405 |
+
num_tokens=4,
|
| 406 |
+
adaptive_scale=True,
|
| 407 |
+
learnable_scale=True
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
print(f"\n[OK] Processor created successfully")
|
| 411 |
+
print(f"Parameters: {sum(p.numel() for p in processor.parameters()):,}")
|
| 412 |
+
print(f"XFormers available: {xformers_available}")
|
| 413 |
+
print(f"Has adaptive scaling: {processor.adaptive_scale}")
|
| 414 |
+
print(f"Has learnable scale: {isinstance(processor.scale_param, nn.Parameter)}")
|
models.py
CHANGED
|
@@ -378,22 +378,53 @@ def optimize_pipeline(pipe):
|
|
| 378 |
|
| 379 |
def load_caption_model():
|
| 380 |
"""
|
| 381 |
-
Load BLIP model for
|
|
|
|
| 382 |
|
| 383 |
Returns:
|
| 384 |
Tuple of (processor, model, success_bool)
|
| 385 |
"""
|
| 386 |
-
print("Loading BLIP model for
|
| 387 |
try:
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
except Exception as e:
|
| 396 |
-
print(f" [WARNING]
|
| 397 |
print(" Caption generation will be disabled")
|
| 398 |
return None, None, False
|
| 399 |
|
|
|
|
| 378 |
|
| 379 |
def load_caption_model():
|
| 380 |
"""
|
| 381 |
+
Load BLIP-2 model for longer, more detailed caption generation.
|
| 382 |
+
BLIP-2 produces richer descriptions compared to BLIP base.
|
| 383 |
|
| 384 |
Returns:
|
| 385 |
Tuple of (processor, model, success_bool)
|
| 386 |
"""
|
| 387 |
+
print("Loading BLIP-2 model for detailed caption generation...")
|
| 388 |
try:
|
| 389 |
+
# Try BLIP-2 first (produces longer, more detailed captions)
|
| 390 |
+
try:
|
| 391 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 392 |
+
|
| 393 |
+
caption_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 394 |
+
caption_model = Blip2ForConditionalGeneration.from_pretrained(
|
| 395 |
+
"Salesforce/blip2-opt-2.7b",
|
| 396 |
+
torch_dtype=dtype
|
| 397 |
+
).to(device)
|
| 398 |
+
print(" [OK] BLIP-2 model loaded successfully (produces detailed captions)")
|
| 399 |
+
return caption_processor, caption_model, True
|
| 400 |
+
except Exception as e:
|
| 401 |
+
print(f" [INFO] BLIP-2 not available ({e}), trying GIT-Large...")
|
| 402 |
+
|
| 403 |
+
# Fallback to GIT-Large (also produces good long captions)
|
| 404 |
+
try:
|
| 405 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 406 |
+
|
| 407 |
+
caption_processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
| 408 |
+
caption_model = AutoModelForCausalLM.from_pretrained(
|
| 409 |
+
"microsoft/git-large-coco",
|
| 410 |
+
torch_dtype=dtype
|
| 411 |
+
).to(device)
|
| 412 |
+
print(" [OK] GIT-Large model loaded successfully (produces detailed captions)")
|
| 413 |
+
return caption_processor, caption_model, True
|
| 414 |
+
except Exception as e2:
|
| 415 |
+
print(f" [INFO] GIT-Large not available ({e2}), falling back to BLIP base...")
|
| 416 |
+
|
| 417 |
+
# Final fallback to BLIP base
|
| 418 |
+
caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 419 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(
|
| 420 |
+
"Salesforce/blip-image-captioning-base",
|
| 421 |
+
torch_dtype=dtype
|
| 422 |
+
).to(device)
|
| 423 |
+
print(" [OK] BLIP base model loaded (shorter captions)")
|
| 424 |
+
return caption_processor, caption_model, True
|
| 425 |
+
|
| 426 |
except Exception as e:
|
| 427 |
+
print(f" [WARNING] Caption model not available: {e}")
|
| 428 |
print(" Caption generation will be disabled")
|
| 429 |
return None, None, False
|
| 430 |
|
utils.py
CHANGED
|
@@ -393,35 +393,87 @@ def get_demographic_description(age, gender_code):
|
|
| 393 |
return demo_desc
|
| 394 |
|
| 395 |
|
| 396 |
-
def calculate_optimal_size(original_width, original_height, recommended_sizes):
|
| 397 |
"""
|
| 398 |
-
Calculate optimal size
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
Args:
|
| 401 |
original_width: Original image width
|
| 402 |
-
original_height: Original image height
|
| 403 |
-
recommended_sizes:
|
|
|
|
| 404 |
|
| 405 |
Returns:
|
| 406 |
-
Tuple of (optimal_width, optimal_height)
|
| 407 |
"""
|
| 408 |
aspect_ratio = original_width / original_height
|
| 409 |
|
| 410 |
-
#
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
return width, height
|
| 427 |
|
|
|
|
| 393 |
return demo_desc
|
| 394 |
|
| 395 |
|
| 396 |
+
def calculate_optimal_size(original_width, original_height, recommended_sizes=None, max_dimension=1536):
|
| 397 |
"""
|
| 398 |
+
Calculate optimal size maintaining aspect ratio with dimensions as multiples of 8.
|
| 399 |
+
|
| 400 |
+
This updated version supports ANY aspect ratio (not just predefined ones),
|
| 401 |
+
while ensuring dimensions are multiples of 8 and keeping total pixels reasonable.
|
| 402 |
|
| 403 |
Args:
|
| 404 |
original_width: Original image width
|
| 405 |
+
original_height: Original image height
|
| 406 |
+
recommended_sizes: Optional list of (width, height) tuples (legacy support)
|
| 407 |
+
max_dimension: Maximum allowed dimension (default 1536)
|
| 408 |
|
| 409 |
Returns:
|
| 410 |
+
Tuple of (optimal_width, optimal_height) as multiples of 8
|
| 411 |
"""
|
| 412 |
aspect_ratio = original_width / original_height
|
| 413 |
|
| 414 |
+
# Legacy mode: use recommended sizes if provided
|
| 415 |
+
if recommended_sizes is not None:
|
| 416 |
+
best_match = None
|
| 417 |
+
best_diff = float('inf')
|
| 418 |
+
|
| 419 |
+
for width, height in recommended_sizes:
|
| 420 |
+
rec_aspect = width / height
|
| 421 |
+
diff = abs(rec_aspect - aspect_ratio)
|
| 422 |
+
if diff < best_diff:
|
| 423 |
+
best_diff = diff
|
| 424 |
+
best_match = (width, height)
|
| 425 |
+
|
| 426 |
+
# Ensure dimensions are multiples of 8
|
| 427 |
+
width, height = best_match
|
| 428 |
+
width = int((width // 8) * 8)
|
| 429 |
+
height = int((height // 8) * 8)
|
| 430 |
+
|
| 431 |
+
return width, height
|
| 432 |
+
|
| 433 |
+
# NEW: Support any aspect ratio
|
| 434 |
+
# Strategy: Keep aspect ratio, scale to reasonable total pixels, round to multiples of 8
|
| 435 |
+
|
| 436 |
+
# Target total pixels (around 1 megapixel for SDXL, adjustable)
|
| 437 |
+
target_pixels = 1024 * 1024 # ~1MP, good balance for SDXL
|
| 438 |
+
|
| 439 |
+
# Calculate dimensions that maintain aspect ratio and hit target pixels
|
| 440 |
+
# width * height = target_pixels
|
| 441 |
+
# width / height = aspect_ratio
|
| 442 |
+
# => width = aspect_ratio * height
|
| 443 |
+
# => aspect_ratio * height^2 = target_pixels
|
| 444 |
+
# => height = sqrt(target_pixels / aspect_ratio)
|
| 445 |
+
|
| 446 |
+
optimal_height = math.sqrt(target_pixels / aspect_ratio)
|
| 447 |
+
optimal_width = optimal_height * aspect_ratio
|
| 448 |
+
|
| 449 |
+
# Ensure we don't exceed max_dimension
|
| 450 |
+
if optimal_width > max_dimension:
|
| 451 |
+
optimal_width = max_dimension
|
| 452 |
+
optimal_height = optimal_width / aspect_ratio
|
| 453 |
+
|
| 454 |
+
if optimal_height > max_dimension:
|
| 455 |
+
optimal_height = max_dimension
|
| 456 |
+
optimal_width = optimal_height * aspect_ratio
|
| 457 |
+
|
| 458 |
+
# Round to nearest multiple of 8
|
| 459 |
+
width = int(round(optimal_width / 8) * 8)
|
| 460 |
+
height = int(round(optimal_height / 8) * 8)
|
| 461 |
+
|
| 462 |
+
# Ensure minimum size (at least 512 on shortest side)
|
| 463 |
+
min_dimension = 512
|
| 464 |
+
if min(width, height) < min_dimension:
|
| 465 |
+
if width < height:
|
| 466 |
+
width = min_dimension
|
| 467 |
+
height = int(round((width / aspect_ratio) / 8) * 8)
|
| 468 |
+
else:
|
| 469 |
+
height = min_dimension
|
| 470 |
+
width = int(round((height * aspect_ratio) / 8) * 8)
|
| 471 |
+
|
| 472 |
+
# Final safety check: ensure multiples of 8
|
| 473 |
+
width = max(8, int((width // 8) * 8))
|
| 474 |
+
height = max(8, int((height // 8) * 8))
|
| 475 |
+
|
| 476 |
+
print(f"[SIZING] Aspect ratio: {aspect_ratio:.3f}, Output: {width}x{height} ({width*height/1e6:.2f}MP)")
|
| 477 |
|
| 478 |
return width, height
|
| 479 |
|