Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,12 +6,11 @@ from diffusers import (
|
|
| 6 |
StableDiffusionXLControlNetPipeline,
|
| 7 |
ControlNetModel,
|
| 8 |
AutoencoderKL,
|
| 9 |
-
|
| 10 |
-
EulerAncestralDiscreteScheduler
|
| 11 |
)
|
| 12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 13 |
from insightface.app import FaceAnalysis
|
| 14 |
-
from PIL import Image
|
| 15 |
import numpy as np
|
| 16 |
import cv2
|
| 17 |
from transformers import pipeline as transformers_pipeline
|
|
@@ -23,8 +22,12 @@ MODEL_REPO = "primerz/pixagram"
|
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
print(f"Using device: {device}")
|
| 27 |
print(f"Loading models from: {MODEL_REPO}")
|
|
|
|
| 28 |
|
| 29 |
class RetroArtConverter:
|
| 30 |
def __init__(self):
|
|
@@ -32,7 +35,6 @@ class RetroArtConverter:
|
|
| 32 |
self.dtype = dtype
|
| 33 |
self.models_loaded = {
|
| 34 |
'custom_checkpoint': False,
|
| 35 |
-
'custom_vae': False,
|
| 36 |
'lora': False,
|
| 37 |
'instantid': False
|
| 38 |
}
|
|
@@ -50,7 +52,6 @@ class RetroArtConverter:
|
|
| 50 |
self.face_detection_enabled = True
|
| 51 |
except Exception as e:
|
| 52 |
print(f"โ ๏ธ Face detection not available: {e}")
|
| 53 |
-
print("Continuing without face detection")
|
| 54 |
self.face_app = None
|
| 55 |
self.face_detection_enabled = False
|
| 56 |
|
|
@@ -61,7 +62,7 @@ class RetroArtConverter:
|
|
| 61 |
torch_dtype=self.dtype
|
| 62 |
).to(self.device)
|
| 63 |
|
| 64 |
-
# Load InstantID ControlNet
|
| 65 |
print("Loading InstantID ControlNet...")
|
| 66 |
try:
|
| 67 |
self.controlnet_instantid = ControlNetModel.from_pretrained(
|
|
@@ -74,34 +75,10 @@ class RetroArtConverter:
|
|
| 74 |
self.models_loaded['instantid'] = True
|
| 75 |
except Exception as e:
|
| 76 |
print(f"โ ๏ธ InstantID ControlNet not available: {e}")
|
| 77 |
-
print("Running without InstantID")
|
| 78 |
self.controlnet_instantid = None
|
| 79 |
self.instantid_enabled = False
|
| 80 |
|
| 81 |
-
# Load
|
| 82 |
-
print("Loading custom VAE (pixelate) from HuggingFace Hub...")
|
| 83 |
-
try:
|
| 84 |
-
vae_path = hf_hub_download(
|
| 85 |
-
repo_id=MODEL_REPO,
|
| 86 |
-
filename="pixelate.safetensors",
|
| 87 |
-
repo_type="model"
|
| 88 |
-
)
|
| 89 |
-
self.vae = AutoencoderKL.from_single_file(
|
| 90 |
-
vae_path,
|
| 91 |
-
torch_dtype=self.dtype
|
| 92 |
-
).to(self.device)
|
| 93 |
-
print("โ Custom VAE loaded successfully")
|
| 94 |
-
self.models_loaded['custom_vae'] = True
|
| 95 |
-
except Exception as e:
|
| 96 |
-
print(f"โ ๏ธ Could not load custom VAE: {e}")
|
| 97 |
-
print("Using high-quality SDXL VAE instead")
|
| 98 |
-
self.vae = AutoencoderKL.from_pretrained(
|
| 99 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
| 100 |
-
torch_dtype=self.dtype
|
| 101 |
-
).to(self.device)
|
| 102 |
-
self.models_loaded['custom_vae'] = False
|
| 103 |
-
|
| 104 |
-
# Load depth estimator for preprocessing
|
| 105 |
print("Loading depth estimator...")
|
| 106 |
self.depth_estimator = transformers_pipeline(
|
| 107 |
'depth-estimation',
|
|
@@ -118,7 +95,8 @@ class RetroArtConverter:
|
|
| 118 |
print(f"Initializing with single ControlNet: Depth only")
|
| 119 |
|
| 120 |
# Load SDXL checkpoint from HuggingFace Hub
|
| 121 |
-
|
|
|
|
| 122 |
try:
|
| 123 |
model_path = hf_hub_download(
|
| 124 |
repo_id=MODEL_REPO,
|
|
@@ -128,11 +106,10 @@ class RetroArtConverter:
|
|
| 128 |
self.pipe = StableDiffusionXLControlNetPipeline.from_single_file(
|
| 129 |
model_path,
|
| 130 |
controlnet=controlnets,
|
| 131 |
-
vae=self.vae,
|
| 132 |
torch_dtype=self.dtype,
|
| 133 |
use_safetensors=True
|
| 134 |
).to(self.device)
|
| 135 |
-
print("โ Custom checkpoint loaded successfully")
|
| 136 |
self.models_loaded['custom_checkpoint'] = True
|
| 137 |
except Exception as e:
|
| 138 |
print(f"โ ๏ธ Could not load custom checkpoint: {e}")
|
|
@@ -140,7 +117,6 @@ class RetroArtConverter:
|
|
| 140 |
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 141 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 142 |
controlnet=controlnets,
|
| 143 |
-
vae=self.vae,
|
| 144 |
torch_dtype=self.dtype,
|
| 145 |
use_safetensors=True
|
| 146 |
).to(self.device)
|
|
@@ -155,25 +131,23 @@ class RetroArtConverter:
|
|
| 155 |
repo_type="model"
|
| 156 |
)
|
| 157 |
self.pipe.load_lora_weights(lora_path)
|
| 158 |
-
print("โ LORA loaded successfully")
|
|
|
|
| 159 |
self.models_loaded['lora'] = True
|
| 160 |
except Exception as e:
|
| 161 |
print(f"โ ๏ธ Could not load LORA: {e}")
|
| 162 |
-
print("Running without LORA")
|
| 163 |
self.models_loaded['lora'] = False
|
| 164 |
|
| 165 |
-
# Use
|
| 166 |
-
|
|
|
|
| 167 |
self.pipe.scheduler.config
|
| 168 |
)
|
| 169 |
|
| 170 |
-
#
|
| 171 |
-
# self.pipe.enable_vae_slicing()
|
| 172 |
-
|
| 173 |
-
# Enable attention slicing for memory efficiency
|
| 174 |
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 175 |
|
| 176 |
-
# Try to enable xformers
|
| 177 |
if self.device == "cuda":
|
| 178 |
try:
|
| 179 |
self.pipe.enable_xformers_memory_efficient_attention()
|
|
@@ -181,7 +155,12 @@ class RetroArtConverter:
|
|
| 181 |
except Exception as e:
|
| 182 |
print(f"โ ๏ธ xformers not available: {e}")
|
| 183 |
|
| 184 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
self.using_multiple_controlnets = isinstance(controlnets, list)
|
| 186 |
print(f"Pipeline initialized with {'multiple' if self.using_multiple_controlnets else 'single'} ControlNet(s)")
|
| 187 |
|
|
@@ -191,150 +170,133 @@ class RetroArtConverter:
|
|
| 191 |
print(f"{model}: {status}")
|
| 192 |
print("===================\n")
|
| 193 |
|
| 194 |
-
print("Model initialization complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
def
|
| 197 |
-
"""
|
| 198 |
-
# Sharpen slightly
|
| 199 |
-
enhancer = ImageEnhance.Sharpness(image)
|
| 200 |
-
image = enhancer.enhance(1.2)
|
| 201 |
-
|
| 202 |
-
# Enhance contrast slightly
|
| 203 |
-
enhancer = ImageEnhance.Contrast(image)
|
| 204 |
-
image = enhancer.enhance(1.1)
|
| 205 |
-
|
| 206 |
-
return image
|
| 207 |
-
|
| 208 |
-
def get_depth_map(self, image, enhance=True):
|
| 209 |
-
"""Generate depth map from input image with quality improvements"""
|
| 210 |
-
# Enhance image before depth estimation if needed
|
| 211 |
-
if enhance:
|
| 212 |
-
image = self.enhance_image_quality(image)
|
| 213 |
-
|
| 214 |
depth = self.depth_estimator(image)
|
| 215 |
depth_image = depth['depth']
|
| 216 |
|
| 217 |
depth_array = np.array(depth_image)
|
| 218 |
|
| 219 |
-
#
|
| 220 |
depth_min, depth_max = np.percentile(depth_array, [2, 98])
|
| 221 |
depth_normalized = np.clip((depth_array - depth_min) / (depth_max - depth_min + 1e-8), 0, 1) * 255
|
| 222 |
depth_normalized = depth_normalized.astype(np.uint8)
|
| 223 |
|
| 224 |
-
#
|
| 225 |
depth_normalized = cv2.GaussianBlur(depth_normalized, (3, 3), 0)
|
| 226 |
|
| 227 |
-
# Convert to
|
| 228 |
depth_colored = cv2.cvtColor(depth_normalized, cv2.COLOR_GRAY2RGB)
|
| 229 |
|
| 230 |
return Image.fromarray(depth_colored)
|
| 231 |
|
| 232 |
-
def
|
| 233 |
-
"""
|
| 234 |
-
if not self.face_detection_enabled or self.face_app is None:
|
| 235 |
-
return None
|
| 236 |
-
|
| 237 |
-
try:
|
| 238 |
-
img_array = np.array(image)
|
| 239 |
-
faces = self.face_app.get(img_array)
|
| 240 |
-
|
| 241 |
-
if len(faces) == 0:
|
| 242 |
-
return None
|
| 243 |
-
|
| 244 |
-
# Use the largest face
|
| 245 |
-
face = sorted(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
|
| 246 |
-
return torch.from_numpy(face.normed_embedding).unsqueeze(0)
|
| 247 |
-
except Exception as e:
|
| 248 |
-
print(f"Face embedding extraction error: {e}")
|
| 249 |
-
return None
|
| 250 |
-
|
| 251 |
-
def calculate_target_size(self, original_width, original_height, max_dimension=1024):
|
| 252 |
-
"""Calculate target size maintaining aspect ratio"""
|
| 253 |
aspect_ratio = original_width / original_height
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
def generate_retro_art(
|
| 269 |
self,
|
| 270 |
input_image,
|
| 271 |
-
prompt="retro
|
| 272 |
-
negative_prompt="blurry, low quality,
|
| 273 |
-
num_inference_steps=
|
| 274 |
-
guidance_scale=
|
| 275 |
-
controlnet_conditioning_scale=0.
|
| 276 |
-
lora_scale=0
|
| 277 |
identity_preservation=0.8,
|
| 278 |
-
image_scale=0.2
|
| 279 |
-
enhance_quality=True # New parameter
|
| 280 |
):
|
| 281 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
#
|
| 284 |
original_width, original_height = input_image.size
|
| 285 |
-
target_width, target_height = self.
|
| 286 |
|
| 287 |
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
|
|
|
|
| 288 |
|
| 289 |
-
#
|
| 290 |
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
|
| 291 |
|
| 292 |
-
#
|
| 293 |
-
if enhance_quality:
|
| 294 |
-
resized_image = self.enhance_image_quality(resized_image)
|
| 295 |
-
|
| 296 |
-
# Generate depth map with quality enhancements
|
| 297 |
print("Generating depth map...")
|
| 298 |
-
depth_image = self.get_depth_map(resized_image
|
| 299 |
depth_image = depth_image.resize((target_width, target_height), Image.LANCZOS)
|
| 300 |
|
| 301 |
-
#
|
| 302 |
using_multiple_controlnets = self.using_multiple_controlnets
|
| 303 |
-
|
| 304 |
-
# Extract face embeddings if InstantID is enabled
|
| 305 |
face_embeddings = None
|
| 306 |
has_detected_faces = False
|
| 307 |
|
| 308 |
if using_multiple_controlnets:
|
| 309 |
-
print("
|
| 310 |
img_array = np.array(resized_image)
|
| 311 |
faces = self.face_app.get(img_array) if self.face_app is not None else []
|
| 312 |
|
| 313 |
if len(faces) > 0:
|
| 314 |
has_detected_faces = True
|
| 315 |
-
print(f"Detected {len(faces)} face(s)
|
| 316 |
-
# Get the largest face
|
| 317 |
face = sorted(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
|
| 318 |
face_embeddings = torch.from_numpy(face.normed_embedding).unsqueeze(0).to(self.device, dtype=self.dtype)
|
| 319 |
-
|
| 320 |
-
# Enhance prompt for face preservation
|
| 321 |
-
prompt = f"portrait, detailed face, facial features, {prompt}"
|
| 322 |
|
| 323 |
# Set LORA scale
|
| 324 |
if hasattr(self.pipe, 'set_adapters') and self.models_loaded['lora']:
|
| 325 |
try:
|
| 326 |
self.pipe.set_adapters(["retroart"], adapter_weights=[lora_scale])
|
| 327 |
-
print(f"LORA scale
|
| 328 |
except Exception as e:
|
| 329 |
-
print(f"Could not set LORA
|
| 330 |
-
|
| 331 |
-
# Enhanced negative prompt for better quality
|
| 332 |
-
enhanced_negative_prompt = f"{negative_prompt}, worst quality, low quality, normal quality, lowres, watermark, signature, text, jpeg artifacts, noise, grainy"
|
| 333 |
|
| 334 |
-
# Prepare
|
| 335 |
pipe_kwargs = {
|
| 336 |
"prompt": prompt,
|
| 337 |
-
"negative_prompt":
|
| 338 |
"num_inference_steps": num_inference_steps,
|
| 339 |
"guidance_scale": guidance_scale,
|
| 340 |
"width": target_width,
|
|
@@ -342,21 +304,24 @@ class RetroArtConverter:
|
|
| 342 |
"generator": torch.Generator(device=self.device).manual_seed(42)
|
| 343 |
}
|
| 344 |
|
| 345 |
-
# Add
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
if using_multiple_controlnets and has_detected_faces:
|
| 347 |
-
print("Using
|
| 348 |
control_images = [depth_image, resized_image]
|
| 349 |
conditioning_scales = [controlnet_conditioning_scale, image_scale]
|
| 350 |
|
| 351 |
pipe_kwargs["image"] = control_images
|
| 352 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 353 |
|
| 354 |
-
# Add face embeddings for InstantID IP-Adapter
|
| 355 |
if face_embeddings is not None:
|
| 356 |
pipe_kwargs["cross_attention_kwargs"] = {"ip_adapter_image_embeds": [face_embeddings]}
|
| 357 |
|
| 358 |
elif using_multiple_controlnets and not has_detected_faces:
|
| 359 |
-
print("Multiple ControlNets available but no faces detected
|
| 360 |
control_images = [depth_image, depth_image]
|
| 361 |
conditioning_scales = [controlnet_conditioning_scale, 0.0]
|
| 362 |
|
|
@@ -364,22 +329,20 @@ class RetroArtConverter:
|
|
| 364 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 365 |
|
| 366 |
else:
|
| 367 |
-
print("Using
|
| 368 |
pipe_kwargs["image"] = depth_image
|
| 369 |
pipe_kwargs["controlnet_conditioning_scale"] = controlnet_conditioning_scale
|
| 370 |
|
| 371 |
-
# Generate
|
| 372 |
-
print("Generating
|
| 373 |
-
print(f"Steps: {num_inference_steps}, Guidance: {guidance_scale}")
|
| 374 |
result = self.pipe(**pipe_kwargs)
|
| 375 |
|
| 376 |
return result.images[0]
|
| 377 |
|
| 378 |
-
# Initialize
|
| 379 |
print("Initializing RetroArt Converter...")
|
| 380 |
converter = RetroArtConverter()
|
| 381 |
|
| 382 |
-
# Gradio interface with ZeroGPU support
|
| 383 |
@spaces.GPU
|
| 384 |
def process_image(
|
| 385 |
image,
|
|
@@ -390,8 +353,7 @@ def process_image(
|
|
| 390 |
controlnet_scale,
|
| 391 |
lora_scale,
|
| 392 |
identity_preservation,
|
| 393 |
-
image_scale
|
| 394 |
-
enhance_quality
|
| 395 |
):
|
| 396 |
if image is None:
|
| 397 |
return None
|
|
@@ -406,8 +368,7 @@ def process_image(
|
|
| 406 |
controlnet_conditioning_scale=controlnet_scale,
|
| 407 |
lora_scale=lora_scale,
|
| 408 |
identity_preservation=identity_preservation,
|
| 409 |
-
image_scale=image_scale
|
| 410 |
-
enhance_quality=enhance_quality
|
| 411 |
)
|
| 412 |
return result
|
| 413 |
except Exception as e:
|
|
@@ -416,87 +377,89 @@ def process_image(
|
|
| 416 |
traceback.print_exc()
|
| 417 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 418 |
|
| 419 |
-
#
|
| 420 |
-
with gr.Blocks(title="RetroArt Converter", theme=gr.themes.Soft()) as demo:
|
| 421 |
gr.Markdown("""
|
| 422 |
-
# ๐ฎ RetroArt Converter
|
| 423 |
|
| 424 |
-
Convert
|
| 425 |
|
| 426 |
-
|
| 427 |
-
-
|
| 428 |
-
-
|
| 429 |
-
-
|
| 430 |
-
-
|
| 431 |
-
-
|
| 432 |
-
- Face preservation with InstantID
|
| 433 |
""")
|
| 434 |
|
| 435 |
-
# Model status
|
| 436 |
if converter.models_loaded:
|
| 437 |
-
status_text = "
|
| 438 |
-
status_text += f"- Custom Checkpoint: {'โ' if converter.models_loaded['custom_checkpoint'] else 'โ
|
| 439 |
-
status_text += f"-
|
| 440 |
-
status_text += f"-
|
| 441 |
-
status_text += f"- InstantID: {'โ' if converter.models_loaded['instantid'] else 'โ (disabled)'}\n"
|
| 442 |
gr.Markdown(status_text)
|
| 443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
with gr.Row():
|
| 445 |
with gr.Column():
|
| 446 |
input_image = gr.Image(label="Input Image", type="pil")
|
| 447 |
|
| 448 |
prompt = gr.Textbox(
|
| 449 |
-
label="Prompt",
|
| 450 |
-
value="
|
| 451 |
-
lines=3
|
|
|
|
| 452 |
)
|
| 453 |
|
| 454 |
negative_prompt = gr.Textbox(
|
| 455 |
label="Negative Prompt",
|
| 456 |
-
value="blurry, low quality,
|
| 457 |
lines=2
|
| 458 |
)
|
| 459 |
|
| 460 |
-
|
| 461 |
-
label="Enable Quality Enhancement",
|
| 462 |
-
value=True,
|
| 463 |
-
info="Sharpen and enhance input image before processing"
|
| 464 |
-
)
|
| 465 |
-
|
| 466 |
-
with gr.Accordion("Quality Settings", open=True):
|
| 467 |
steps = gr.Slider(
|
| 468 |
-
minimum=
|
| 469 |
-
maximum=
|
| 470 |
-
value=
|
| 471 |
-
step=
|
| 472 |
-
label="Inference Steps (
|
| 473 |
)
|
| 474 |
|
| 475 |
guidance_scale = gr.Slider(
|
| 476 |
-
minimum=
|
| 477 |
-
maximum=
|
| 478 |
-
value=
|
| 479 |
-
step=0.
|
| 480 |
-
label="Guidance Scale (
|
| 481 |
)
|
| 482 |
|
| 483 |
controlnet_scale = gr.Slider(
|
| 484 |
-
minimum=0,
|
| 485 |
-
maximum=1.
|
| 486 |
-
value=0.
|
| 487 |
step=0.05,
|
| 488 |
-
label="ControlNet Depth Scale
|
| 489 |
)
|
| 490 |
|
| 491 |
lora_scale = gr.Slider(
|
| 492 |
-
minimum=0,
|
| 493 |
-
maximum=
|
| 494 |
-
value=0
|
| 495 |
step=0.05,
|
| 496 |
label="RetroArt LORA Scale"
|
| 497 |
)
|
| 498 |
|
| 499 |
-
with gr.Accordion("Identity Settings (for portraits)", open=False):
|
| 500 |
identity_preservation = gr.Slider(
|
| 501 |
minimum=0,
|
| 502 |
maximum=1.5,
|
|
@@ -519,43 +482,33 @@ with gr.Blocks(title="RetroArt Converter", theme=gr.themes.Soft()) as demo:
|
|
| 519 |
output_image = gr.Image(label="Retro Art Output")
|
| 520 |
|
| 521 |
gr.Markdown("""
|
| 522 |
-
### Tips for Best
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
""")
|
| 530 |
|
| 531 |
-
gr.Examples(
|
| 532 |
-
examples=[
|
| 533 |
-
[
|
| 534 |
-
"example_portrait.jpg",
|
| 535 |
-
"masterpiece, best quality, retro pixel art portrait, 16-bit game character, vibrant colors",
|
| 536 |
-
"blurry, modern, low quality",
|
| 537 |
-
40, 7.5, 0.6, 0.85, 0.8, 0.2, True
|
| 538 |
-
],
|
| 539 |
-
],
|
| 540 |
-
inputs=[
|
| 541 |
-
input_image, prompt, negative_prompt, steps, guidance_scale,
|
| 542 |
-
controlnet_scale, lora_scale, identity_preservation, image_scale, enhance_quality
|
| 543 |
-
],
|
| 544 |
-
outputs=[output_image],
|
| 545 |
-
fn=process_image,
|
| 546 |
-
cache_examples=False
|
| 547 |
-
)
|
| 548 |
-
|
| 549 |
generate_btn.click(
|
| 550 |
fn=process_image,
|
| 551 |
inputs=[
|
| 552 |
-
input_image, prompt, negative_prompt, steps, guidance_scale,
|
| 553 |
-
controlnet_scale, lora_scale, identity_preservation, image_scale
|
| 554 |
],
|
| 555 |
outputs=[output_image]
|
| 556 |
)
|
| 557 |
|
| 558 |
-
# Launch with API enabled
|
| 559 |
if __name__ == "__main__":
|
| 560 |
demo.queue(max_size=20)
|
| 561 |
demo.launch(
|
|
|
|
| 6 |
StableDiffusionXLControlNetPipeline,
|
| 7 |
ControlNetModel,
|
| 8 |
AutoencoderKL,
|
| 9 |
+
LCMScheduler # CORRECT SCHEDULER FOR LCM
|
|
|
|
| 10 |
)
|
| 11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 12 |
from insightface.app import FaceAnalysis
|
| 13 |
+
from PIL import Image
|
| 14 |
import numpy as np
|
| 15 |
import cv2
|
| 16 |
from transformers import pipeline as transformers_pipeline
|
|
|
|
| 22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 24 |
|
| 25 |
+
# LORA trigger word
|
| 26 |
+
TRIGGER_WORD = "p1x3l4rt, pixel art"
|
| 27 |
+
|
| 28 |
print(f"Using device: {device}")
|
| 29 |
print(f"Loading models from: {MODEL_REPO}")
|
| 30 |
+
print(f"LORA Trigger Word: {TRIGGER_WORD}")
|
| 31 |
|
| 32 |
class RetroArtConverter:
|
| 33 |
def __init__(self):
|
|
|
|
| 35 |
self.dtype = dtype
|
| 36 |
self.models_loaded = {
|
| 37 |
'custom_checkpoint': False,
|
|
|
|
| 38 |
'lora': False,
|
| 39 |
'instantid': False
|
| 40 |
}
|
|
|
|
| 52 |
self.face_detection_enabled = True
|
| 53 |
except Exception as e:
|
| 54 |
print(f"โ ๏ธ Face detection not available: {e}")
|
|
|
|
| 55 |
self.face_app = None
|
| 56 |
self.face_detection_enabled = False
|
| 57 |
|
|
|
|
| 62 |
torch_dtype=self.dtype
|
| 63 |
).to(self.device)
|
| 64 |
|
| 65 |
+
# Load InstantID ControlNet (optional)
|
| 66 |
print("Loading InstantID ControlNet...")
|
| 67 |
try:
|
| 68 |
self.controlnet_instantid = ControlNetModel.from_pretrained(
|
|
|
|
| 75 |
self.models_loaded['instantid'] = True
|
| 76 |
except Exception as e:
|
| 77 |
print(f"โ ๏ธ InstantID ControlNet not available: {e}")
|
|
|
|
| 78 |
self.controlnet_instantid = None
|
| 79 |
self.instantid_enabled = False
|
| 80 |
|
| 81 |
+
# Load depth estimator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
print("Loading depth estimator...")
|
| 83 |
self.depth_estimator = transformers_pipeline(
|
| 84 |
'depth-estimation',
|
|
|
|
| 95 |
print(f"Initializing with single ControlNet: Depth only")
|
| 96 |
|
| 97 |
# Load SDXL checkpoint from HuggingFace Hub
|
| 98 |
+
# NOTE: VAE is bundled in the checkpoint, don't load separately!
|
| 99 |
+
print("Loading SDXL checkpoint (horizon) with bundled VAE from HuggingFace Hub...")
|
| 100 |
try:
|
| 101 |
model_path = hf_hub_download(
|
| 102 |
repo_id=MODEL_REPO,
|
|
|
|
| 106 |
self.pipe = StableDiffusionXLControlNetPipeline.from_single_file(
|
| 107 |
model_path,
|
| 108 |
controlnet=controlnets,
|
|
|
|
| 109 |
torch_dtype=self.dtype,
|
| 110 |
use_safetensors=True
|
| 111 |
).to(self.device)
|
| 112 |
+
print("โ Custom checkpoint loaded successfully (VAE bundled)")
|
| 113 |
self.models_loaded['custom_checkpoint'] = True
|
| 114 |
except Exception as e:
|
| 115 |
print(f"โ ๏ธ Could not load custom checkpoint: {e}")
|
|
|
|
| 117 |
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 118 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 119 |
controlnet=controlnets,
|
|
|
|
| 120 |
torch_dtype=self.dtype,
|
| 121 |
use_safetensors=True
|
| 122 |
).to(self.device)
|
|
|
|
| 131 |
repo_type="model"
|
| 132 |
)
|
| 133 |
self.pipe.load_lora_weights(lora_path)
|
| 134 |
+
print(f"โ LORA loaded successfully")
|
| 135 |
+
print(f" Trigger word: '{TRIGGER_WORD}'")
|
| 136 |
self.models_loaded['lora'] = True
|
| 137 |
except Exception as e:
|
| 138 |
print(f"โ ๏ธ Could not load LORA: {e}")
|
|
|
|
| 139 |
self.models_loaded['lora'] = False
|
| 140 |
|
| 141 |
+
# CRITICAL: Use LCM Scheduler for this model!
|
| 142 |
+
print("Setting up LCM scheduler...")
|
| 143 |
+
self.pipe.scheduler = LCMScheduler.from_config(
|
| 144 |
self.pipe.scheduler.config
|
| 145 |
)
|
| 146 |
|
| 147 |
+
# Enable attention optimizations
|
|
|
|
|
|
|
|
|
|
| 148 |
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 149 |
|
| 150 |
+
# Try to enable xformers
|
| 151 |
if self.device == "cuda":
|
| 152 |
try:
|
| 153 |
self.pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
print(f"โ ๏ธ xformers not available: {e}")
|
| 157 |
|
| 158 |
+
# Set CLIP skip to 2
|
| 159 |
+
if hasattr(self.pipe, 'text_encoder'):
|
| 160 |
+
self.clip_skip = 2
|
| 161 |
+
print(f"โ CLIP skip set to {self.clip_skip}")
|
| 162 |
+
|
| 163 |
+
# Track controlnet configuration
|
| 164 |
self.using_multiple_controlnets = isinstance(controlnets, list)
|
| 165 |
print(f"Pipeline initialized with {'multiple' if self.using_multiple_controlnets else 'single'} ControlNet(s)")
|
| 166 |
|
|
|
|
| 170 |
print(f"{model}: {status}")
|
| 171 |
print("===================\n")
|
| 172 |
|
| 173 |
+
print("โ Model initialization complete!")
|
| 174 |
+
print("\n=== LCM CONFIGURATION ===")
|
| 175 |
+
print("Scheduler: LCM")
|
| 176 |
+
print("Recommended Steps: 12")
|
| 177 |
+
print("Recommended CFG: 1.0-1.5")
|
| 178 |
+
print("Recommended Resolution: 896x1152 or 832x1216")
|
| 179 |
+
print("CLIP Skip: 2")
|
| 180 |
+
print(f"LORA Trigger: '{TRIGGER_WORD}'")
|
| 181 |
+
print("=========================\n")
|
| 182 |
|
| 183 |
+
def get_depth_map(self, image):
|
| 184 |
+
"""Generate depth map from input image"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
depth = self.depth_estimator(image)
|
| 186 |
depth_image = depth['depth']
|
| 187 |
|
| 188 |
depth_array = np.array(depth_image)
|
| 189 |
|
| 190 |
+
# Normalize with percentile clipping
|
| 191 |
depth_min, depth_max = np.percentile(depth_array, [2, 98])
|
| 192 |
depth_normalized = np.clip((depth_array - depth_min) / (depth_max - depth_min + 1e-8), 0, 1) * 255
|
| 193 |
depth_normalized = depth_normalized.astype(np.uint8)
|
| 194 |
|
| 195 |
+
# Slight blur to reduce noise
|
| 196 |
depth_normalized = cv2.GaussianBlur(depth_normalized, (3, 3), 0)
|
| 197 |
|
| 198 |
+
# Convert to RGB
|
| 199 |
depth_colored = cv2.cvtColor(depth_normalized, cv2.COLOR_GRAY2RGB)
|
| 200 |
|
| 201 |
return Image.fromarray(depth_colored)
|
| 202 |
|
| 203 |
+
def calculate_optimal_size(self, original_width, original_height):
|
| 204 |
+
"""Calculate optimal size from recommended resolutions"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
aspect_ratio = original_width / original_height
|
| 206 |
|
| 207 |
+
# Recommended resolutions for this model
|
| 208 |
+
recommended_sizes = [
|
| 209 |
+
(896, 1152), # Portrait
|
| 210 |
+
(1152, 896), # Landscape
|
| 211 |
+
(832, 1216), # Tall portrait
|
| 212 |
+
(1216, 832), # Wide landscape
|
| 213 |
+
(1024, 1024) # Square
|
| 214 |
+
]
|
| 215 |
+
|
| 216 |
+
# Find closest matching aspect ratio
|
| 217 |
+
best_match = None
|
| 218 |
+
best_diff = float('inf')
|
| 219 |
+
|
| 220 |
+
for width, height in recommended_sizes:
|
| 221 |
+
rec_aspect = width / height
|
| 222 |
+
diff = abs(rec_aspect - aspect_ratio)
|
| 223 |
+
if diff < best_diff:
|
| 224 |
+
best_diff = diff
|
| 225 |
+
best_match = (width, height)
|
| 226 |
+
|
| 227 |
+
# Ensure dimensions are multiples of 8
|
| 228 |
+
width, height = best_match
|
| 229 |
+
width = (width // 8) * 8
|
| 230 |
+
height = (height // 8) * 8
|
| 231 |
+
|
| 232 |
+
return width, height
|
| 233 |
+
|
| 234 |
+
def add_trigger_word(self, prompt):
|
| 235 |
+
"""Add trigger word to prompt if not present"""
|
| 236 |
+
if TRIGGER_WORD.lower() not in prompt.lower():
|
| 237 |
+
return f"{TRIGGER_WORD}, {prompt}"
|
| 238 |
+
return prompt
|
| 239 |
|
| 240 |
def generate_retro_art(
|
| 241 |
self,
|
| 242 |
input_image,
|
| 243 |
+
prompt="retro game character, vibrant colors, detailed",
|
| 244 |
+
negative_prompt="blurry, low quality, ugly, distorted",
|
| 245 |
+
num_inference_steps=12, # LCM recommended: 12 steps
|
| 246 |
+
guidance_scale=1.0, # LCM recommended: 1.0-1.5
|
| 247 |
+
controlnet_conditioning_scale=0.8,
|
| 248 |
+
lora_scale=1.0,
|
| 249 |
identity_preservation=0.8,
|
| 250 |
+
image_scale=0.2
|
|
|
|
| 251 |
):
|
| 252 |
+
"""Generate retro art with correct LCM settings"""
|
| 253 |
+
|
| 254 |
+
# Add trigger word to prompt
|
| 255 |
+
prompt = self.add_trigger_word(prompt)
|
| 256 |
|
| 257 |
+
# Calculate optimal size
|
| 258 |
original_width, original_height = input_image.size
|
| 259 |
+
target_width, target_height = self.calculate_optimal_size(original_width, original_height)
|
| 260 |
|
| 261 |
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
|
| 262 |
+
print(f"Prompt: {prompt}")
|
| 263 |
|
| 264 |
+
# Resize with high quality
|
| 265 |
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
|
| 266 |
|
| 267 |
+
# Generate depth map
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
print("Generating depth map...")
|
| 269 |
+
depth_image = self.get_depth_map(resized_image)
|
| 270 |
depth_image = depth_image.resize((target_width, target_height), Image.LANCZOS)
|
| 271 |
|
| 272 |
+
# Handle face detection for InstantID
|
| 273 |
using_multiple_controlnets = self.using_multiple_controlnets
|
|
|
|
|
|
|
| 274 |
face_embeddings = None
|
| 275 |
has_detected_faces = False
|
| 276 |
|
| 277 |
if using_multiple_controlnets:
|
| 278 |
+
print("Checking for faces...")
|
| 279 |
img_array = np.array(resized_image)
|
| 280 |
faces = self.face_app.get(img_array) if self.face_app is not None else []
|
| 281 |
|
| 282 |
if len(faces) > 0:
|
| 283 |
has_detected_faces = True
|
| 284 |
+
print(f"Detected {len(faces)} face(s)")
|
|
|
|
| 285 |
face = sorted(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
|
| 286 |
face_embeddings = torch.from_numpy(face.normed_embedding).unsqueeze(0).to(self.device, dtype=self.dtype)
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
# Set LORA scale
|
| 289 |
if hasattr(self.pipe, 'set_adapters') and self.models_loaded['lora']:
|
| 290 |
try:
|
| 291 |
self.pipe.set_adapters(["retroart"], adapter_weights=[lora_scale])
|
| 292 |
+
print(f"LORA scale: {lora_scale}")
|
| 293 |
except Exception as e:
|
| 294 |
+
print(f"Could not set LORA scale: {e}")
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
+
# Prepare generation kwargs
|
| 297 |
pipe_kwargs = {
|
| 298 |
"prompt": prompt,
|
| 299 |
+
"negative_prompt": negative_prompt,
|
| 300 |
"num_inference_steps": num_inference_steps,
|
| 301 |
"guidance_scale": guidance_scale,
|
| 302 |
"width": target_width,
|
|
|
|
| 304 |
"generator": torch.Generator(device=self.device).manual_seed(42)
|
| 305 |
}
|
| 306 |
|
| 307 |
+
# Add CLIP skip
|
| 308 |
+
if hasattr(self.pipe, 'text_encoder'):
|
| 309 |
+
pipe_kwargs["clip_skip"] = 2
|
| 310 |
+
|
| 311 |
+
# Configure ControlNet inputs
|
| 312 |
if using_multiple_controlnets and has_detected_faces:
|
| 313 |
+
print("Using Depth + InstantID ControlNets")
|
| 314 |
control_images = [depth_image, resized_image]
|
| 315 |
conditioning_scales = [controlnet_conditioning_scale, image_scale]
|
| 316 |
|
| 317 |
pipe_kwargs["image"] = control_images
|
| 318 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 319 |
|
|
|
|
| 320 |
if face_embeddings is not None:
|
| 321 |
pipe_kwargs["cross_attention_kwargs"] = {"ip_adapter_image_embeds": [face_embeddings]}
|
| 322 |
|
| 323 |
elif using_multiple_controlnets and not has_detected_faces:
|
| 324 |
+
print("Multiple ControlNets available but no faces detected")
|
| 325 |
control_images = [depth_image, depth_image]
|
| 326 |
conditioning_scales = [controlnet_conditioning_scale, 0.0]
|
| 327 |
|
|
|
|
| 329 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 330 |
|
| 331 |
else:
|
| 332 |
+
print("Using Depth ControlNet only")
|
| 333 |
pipe_kwargs["image"] = depth_image
|
| 334 |
pipe_kwargs["controlnet_conditioning_scale"] = controlnet_conditioning_scale
|
| 335 |
|
| 336 |
+
# Generate
|
| 337 |
+
print(f"Generating with LCM: Steps={num_inference_steps}, CFG={guidance_scale}")
|
|
|
|
| 338 |
result = self.pipe(**pipe_kwargs)
|
| 339 |
|
| 340 |
return result.images[0]
|
| 341 |
|
| 342 |
+
# Initialize converter
|
| 343 |
print("Initializing RetroArt Converter...")
|
| 344 |
converter = RetroArtConverter()
|
| 345 |
|
|
|
|
| 346 |
@spaces.GPU
|
| 347 |
def process_image(
|
| 348 |
image,
|
|
|
|
| 353 |
controlnet_scale,
|
| 354 |
lora_scale,
|
| 355 |
identity_preservation,
|
| 356 |
+
image_scale
|
|
|
|
| 357 |
):
|
| 358 |
if image is None:
|
| 359 |
return None
|
|
|
|
| 368 |
controlnet_conditioning_scale=controlnet_scale,
|
| 369 |
lora_scale=lora_scale,
|
| 370 |
identity_preservation=identity_preservation,
|
| 371 |
+
image_scale=image_scale
|
|
|
|
| 372 |
)
|
| 373 |
return result
|
| 374 |
except Exception as e:
|
|
|
|
| 377 |
traceback.print_exc()
|
| 378 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 379 |
|
| 380 |
+
# Gradio UI
|
| 381 |
+
with gr.Blocks(title="RetroArt Converter - LCM", theme=gr.themes.Soft()) as demo:
|
| 382 |
gr.Markdown("""
|
| 383 |
+
# ๐ฎ RetroArt Converter (LCM Optimized)
|
| 384 |
|
| 385 |
+
Convert images into retro pixel art style using LCM (Latent Consistency Model) for fast, high-quality generation!
|
| 386 |
|
| 387 |
+
**โจ Features:**
|
| 388 |
+
- โก Ultra-fast generation (12 steps!)
|
| 389 |
+
- ๐จ Custom pixel art LORA with trigger word: `p1x3l4rt, pixel art`
|
| 390 |
+
- ๐ Optimized resolutions: 896x1152 / 832x1216
|
| 391 |
+
- ๐ผ๏ธ Bundled VAE for authentic retro look
|
| 392 |
+
- ๐ฏ CLIP Skip 2 for better style
|
|
|
|
| 393 |
""")
|
| 394 |
|
| 395 |
+
# Model status
|
| 396 |
if converter.models_loaded:
|
| 397 |
+
status_text = "**๐ฆ Loaded Models:**\n"
|
| 398 |
+
status_text += f"- Custom Checkpoint (Horizon): {'โ Loaded' if converter.models_loaded['custom_checkpoint'] else 'โ Using SDXL base'}\n"
|
| 399 |
+
status_text += f"- LORA (RetroArt): {'โ Loaded' if converter.models_loaded['lora'] else 'โ Disabled'}\n"
|
| 400 |
+
status_text += f"- InstantID: {'โ Loaded' if converter.models_loaded['instantid'] else 'โ Disabled'}\n"
|
|
|
|
| 401 |
gr.Markdown(status_text)
|
| 402 |
|
| 403 |
+
gr.Markdown(f"""
|
| 404 |
+
**โ๏ธ LCM Configuration:**
|
| 405 |
+
- Scheduler: LCM (Latent Consistency Model)
|
| 406 |
+
- Recommended Steps: **12** (fast!)
|
| 407 |
+
- Recommended CFG: **1.0-1.5** (lower than normal)
|
| 408 |
+
- CLIP Skip: **2**
|
| 409 |
+
- LORA Trigger: `{TRIGGER_WORD}` (auto-added)
|
| 410 |
+
""")
|
| 411 |
+
|
| 412 |
with gr.Row():
|
| 413 |
with gr.Column():
|
| 414 |
input_image = gr.Image(label="Input Image", type="pil")
|
| 415 |
|
| 416 |
prompt = gr.Textbox(
|
| 417 |
+
label="Prompt (trigger word auto-added)",
|
| 418 |
+
value="retro game character, vibrant colors, highly detailed",
|
| 419 |
+
lines=3,
|
| 420 |
+
info=f"'{TRIGGER_WORD}' will be automatically added"
|
| 421 |
)
|
| 422 |
|
| 423 |
negative_prompt = gr.Textbox(
|
| 424 |
label="Negative Prompt",
|
| 425 |
+
value="blurry, low quality, ugly, distorted, deformed, bad anatomy",
|
| 426 |
lines=2
|
| 427 |
)
|
| 428 |
|
| 429 |
+
with gr.Accordion("โก LCM Settings (Optimized)", open=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
steps = gr.Slider(
|
| 431 |
+
minimum=4,
|
| 432 |
+
maximum=20,
|
| 433 |
+
value=12,
|
| 434 |
+
step=1,
|
| 435 |
+
label="Inference Steps (LCM works great with just 12!)"
|
| 436 |
)
|
| 437 |
|
| 438 |
guidance_scale = gr.Slider(
|
| 439 |
+
minimum=0.5,
|
| 440 |
+
maximum=3.0,
|
| 441 |
+
value=1.0,
|
| 442 |
+
step=0.1,
|
| 443 |
+
label="Guidance Scale (CFG) - LCM uses 1.0-1.5"
|
| 444 |
)
|
| 445 |
|
| 446 |
controlnet_scale = gr.Slider(
|
| 447 |
+
minimum=0.3,
|
| 448 |
+
maximum=1.2,
|
| 449 |
+
value=0.8,
|
| 450 |
step=0.05,
|
| 451 |
+
label="ControlNet Depth Scale"
|
| 452 |
)
|
| 453 |
|
| 454 |
lora_scale = gr.Slider(
|
| 455 |
+
minimum=0.5,
|
| 456 |
+
maximum=1.5,
|
| 457 |
+
value=1.0,
|
| 458 |
step=0.05,
|
| 459 |
label="RetroArt LORA Scale"
|
| 460 |
)
|
| 461 |
|
| 462 |
+
with gr.Accordion("๐ญ Identity Settings (for portraits)", open=False):
|
| 463 |
identity_preservation = gr.Slider(
|
| 464 |
minimum=0,
|
| 465 |
maximum=1.5,
|
|
|
|
| 482 |
output_image = gr.Image(label="Retro Art Output")
|
| 483 |
|
| 484 |
gr.Markdown("""
|
| 485 |
+
### ๐ก Tips for Best Results:
|
| 486 |
+
|
| 487 |
+
**For LCM Models:**
|
| 488 |
+
- โ
Use **12 steps** (already optimized!)
|
| 489 |
+
- โ
Keep CFG at **1.0-1.5** (not 7.5!)
|
| 490 |
+
- โ
LORA trigger word is **auto-added**
|
| 491 |
+
- โ
Resolution auto-optimized to 896x1152 or 832x1216
|
| 492 |
+
|
| 493 |
+
**For Quality:**
|
| 494 |
+
- Use high-resolution input images
|
| 495 |
+
- Be specific in prompts: "16-bit game character" vs "character"
|
| 496 |
+
- Adjust ControlNet scale: lower = more creative, higher = more faithful
|
| 497 |
+
|
| 498 |
+
**For Style:**
|
| 499 |
+
- Increase LORA scale (1.0-1.5) for stronger pixel art effect
|
| 500 |
+
- Try prompts like: "SNES style", "16-bit RPG", "Game Boy advance style"
|
| 501 |
""")
|
| 502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
generate_btn.click(
|
| 504 |
fn=process_image,
|
| 505 |
inputs=[
|
| 506 |
+
input_image, prompt, negative_prompt, steps, guidance_scale,
|
| 507 |
+
controlnet_scale, lora_scale, identity_preservation, image_scale
|
| 508 |
],
|
| 509 |
outputs=[output_image]
|
| 510 |
)
|
| 511 |
|
|
|
|
| 512 |
if __name__ == "__main__":
|
| 513 |
demo.queue(max_size=20)
|
| 514 |
demo.launch(
|