Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,21 +2,25 @@ import spaces # MUST be first, before any CUDA-related imports
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from diffusers import (
|
| 5 |
-
StableDiffusionXLPipeline,
|
| 6 |
-
StableDiffusionXLControlNetPipeline,
|
| 7 |
ControlNetModel,
|
| 8 |
AutoencoderKL,
|
| 9 |
-
|
|
|
|
| 10 |
)
|
| 11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 12 |
from insightface.app import FaceAnalysis
|
| 13 |
from PIL import Image
|
| 14 |
import numpy as np
|
| 15 |
import cv2
|
| 16 |
-
from transformers import pipeline as transformers_pipeline
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
import os
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Configuration
|
| 21 |
MODEL_REPO = "primerz/pixagram"
|
| 22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -30,9 +34,10 @@ print(f"Loading models from: {MODEL_REPO}")
|
|
| 30 |
print(f"LORA Trigger Word: {TRIGGER_WORD}")
|
| 31 |
|
| 32 |
class RetroArtConverter:
|
| 33 |
-
def __init__(self):
|
| 34 |
self.device = device
|
| 35 |
self.dtype = dtype
|
|
|
|
| 36 |
self.models_loaded = {
|
| 37 |
'custom_checkpoint': False,
|
| 38 |
'lora': False,
|
|
@@ -40,7 +45,7 @@ class RetroArtConverter:
|
|
| 40 |
}
|
| 41 |
|
| 42 |
# Initialize face analysis for InstantID
|
| 43 |
-
print("Loading face analysis model...")
|
| 44 |
try:
|
| 45 |
self.face_app = FaceAnalysis(
|
| 46 |
name='antelopev2',
|
|
@@ -55,14 +60,7 @@ class RetroArtConverter:
|
|
| 55 |
self.face_app = None
|
| 56 |
self.face_detection_enabled = False
|
| 57 |
|
| 58 |
-
# Load ControlNet for
|
| 59 |
-
print("Loading ControlNet depth model...")
|
| 60 |
-
self.controlnet_depth = ControlNetModel.from_pretrained(
|
| 61 |
-
"diffusers/controlnet-zoe-depth-sdxl-1.0",
|
| 62 |
-
torch_dtype=self.dtype
|
| 63 |
-
).to(self.device)
|
| 64 |
-
|
| 65 |
-
# Load InstantID ControlNet (optional)
|
| 66 |
print("Loading InstantID ControlNet...")
|
| 67 |
try:
|
| 68 |
self.controlnet_instantid = ControlNetModel.from_pretrained(
|
|
@@ -78,50 +76,82 @@ class RetroArtConverter:
|
|
| 78 |
self.controlnet_instantid = None
|
| 79 |
self.instantid_enabled = False
|
| 80 |
|
| 81 |
-
# Load depth
|
| 82 |
-
print("Loading
|
| 83 |
-
self.
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# Determine which controlnets to use
|
| 90 |
if self.instantid_enabled and self.controlnet_instantid is not None:
|
| 91 |
-
controlnets = [self.
|
| 92 |
-
print(f"Initializing with multiple ControlNets:
|
| 93 |
else:
|
| 94 |
controlnets = self.controlnet_depth
|
| 95 |
-
print(f"Initializing with single ControlNet: Depth only")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# Load SDXL checkpoint from HuggingFace Hub
|
| 98 |
-
|
| 99 |
-
print("Loading SDXL checkpoint (horizon) with bundled VAE from HuggingFace Hub...")
|
| 100 |
try:
|
| 101 |
model_path = hf_hub_download(
|
| 102 |
repo_id=MODEL_REPO,
|
| 103 |
filename="horizon.safetensors",
|
| 104 |
repo_type="model"
|
| 105 |
)
|
| 106 |
-
|
|
|
|
| 107 |
model_path,
|
| 108 |
controlnet=controlnets,
|
|
|
|
| 109 |
torch_dtype=self.dtype,
|
| 110 |
use_safetensors=True
|
| 111 |
).to(self.device)
|
| 112 |
-
print("โ Custom checkpoint loaded successfully
|
| 113 |
self.models_loaded['custom_checkpoint'] = True
|
| 114 |
except Exception as e:
|
| 115 |
print(f"โ ๏ธ Could not load custom checkpoint: {e}")
|
| 116 |
print("Using default SDXL base model")
|
| 117 |
-
self.pipe =
|
| 118 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 119 |
controlnet=controlnets,
|
|
|
|
| 120 |
torch_dtype=self.dtype,
|
| 121 |
use_safetensors=True
|
| 122 |
).to(self.device)
|
| 123 |
self.models_loaded['custom_checkpoint'] = False
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# Load LORA from HuggingFace Hub
|
| 126 |
print("Loading LORA (retroart) from HuggingFace Hub...")
|
| 127 |
try:
|
|
@@ -138,11 +168,18 @@ class RetroArtConverter:
|
|
| 138 |
print(f"โ ๏ธ Could not load LORA: {e}")
|
| 139 |
self.models_loaded['lora'] = False
|
| 140 |
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
self.pipe.scheduler.
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
# Enable attention optimizations
|
| 148 |
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
|
@@ -155,11 +192,6 @@ class RetroArtConverter:
|
|
| 155 |
except Exception as e:
|
| 156 |
print(f"โ ๏ธ xformers not available: {e}")
|
| 157 |
|
| 158 |
-
# Set CLIP skip to 2
|
| 159 |
-
if hasattr(self.pipe, 'text_encoder'):
|
| 160 |
-
self.clip_skip = 2
|
| 161 |
-
print(f"โ CLIP skip set to {self.clip_skip}")
|
| 162 |
-
|
| 163 |
# Track controlnet configuration
|
| 164 |
self.using_multiple_controlnets = isinstance(controlnets, list)
|
| 165 |
print(f"Pipeline initialized with {'multiple' if self.using_multiple_controlnets else 'single'} ControlNet(s)")
|
|
@@ -171,40 +203,38 @@ class RetroArtConverter:
|
|
| 171 |
print("===================\n")
|
| 172 |
|
| 173 |
print("โ Model initialization complete!")
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
print(f"LORA Trigger: '{TRIGGER_WORD}'")
|
| 181 |
print("=========================\n")
|
| 182 |
|
| 183 |
def get_depth_map(self, image):
|
| 184 |
-
"""Generate depth map from input image"""
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
# Slight blur to reduce noise
|
| 196 |
-
depth_normalized = cv2.GaussianBlur(depth_normalized, (3, 3), 0)
|
| 197 |
-
|
| 198 |
-
# Convert to RGB
|
| 199 |
-
depth_colored = cv2.cvtColor(depth_normalized, cv2.COLOR_GRAY2RGB)
|
| 200 |
-
|
| 201 |
-
return Image.fromarray(depth_colored)
|
| 202 |
|
| 203 |
def calculate_optimal_size(self, original_width, original_height):
|
| 204 |
"""Calculate optimal size from recommended resolutions"""
|
| 205 |
aspect_ratio = original_width / original_height
|
| 206 |
|
| 207 |
-
# Recommended resolutions for
|
| 208 |
recommended_sizes = [
|
| 209 |
(896, 1152), # Portrait
|
| 210 |
(1152, 896), # Landscape
|
|
@@ -242,14 +272,15 @@ class RetroArtConverter:
|
|
| 242 |
input_image,
|
| 243 |
prompt="retro game character, vibrant colors, detailed",
|
| 244 |
negative_prompt="blurry, low quality, ugly, distorted",
|
| 245 |
-
num_inference_steps=
|
| 246 |
-
guidance_scale=
|
|
|
|
| 247 |
controlnet_conditioning_scale=0.8,
|
| 248 |
lora_scale=1.0,
|
| 249 |
-
|
| 250 |
-
|
| 251 |
):
|
| 252 |
-
"""Generate retro art with
|
| 253 |
|
| 254 |
# Add trigger word to prompt
|
| 255 |
prompt = self.add_trigger_word(prompt)
|
|
@@ -264,26 +295,41 @@ class RetroArtConverter:
|
|
| 264 |
# Resize with high quality
|
| 265 |
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
|
| 266 |
|
| 267 |
-
# Generate depth map
|
| 268 |
-
print("Generating depth map...")
|
| 269 |
depth_image = self.get_depth_map(resized_image)
|
| 270 |
-
depth_image
|
|
|
|
| 271 |
|
| 272 |
# Handle face detection for InstantID
|
| 273 |
using_multiple_controlnets = self.using_multiple_controlnets
|
|
|
|
| 274 |
face_embeddings = None
|
| 275 |
has_detected_faces = False
|
| 276 |
|
| 277 |
-
if using_multiple_controlnets:
|
| 278 |
-
print("
|
| 279 |
img_array = np.array(resized_image)
|
| 280 |
-
faces = self.face_app.get(img_array)
|
| 281 |
|
| 282 |
if len(faces) > 0:
|
| 283 |
has_detected_faces = True
|
| 284 |
print(f"Detected {len(faces)} face(s)")
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
# Set LORA scale
|
| 289 |
if hasattr(self.pipe, 'set_adapters') and self.models_loaded['lora']:
|
|
@@ -297,51 +343,52 @@ class RetroArtConverter:
|
|
| 297 |
pipe_kwargs = {
|
| 298 |
"prompt": prompt,
|
| 299 |
"negative_prompt": negative_prompt,
|
|
|
|
| 300 |
"num_inference_steps": num_inference_steps,
|
| 301 |
"guidance_scale": guidance_scale,
|
| 302 |
-
"
|
| 303 |
-
"height": target_height,
|
| 304 |
"generator": torch.Generator(device=self.device).manual_seed(42)
|
| 305 |
}
|
| 306 |
|
| 307 |
-
# Add CLIP skip
|
| 308 |
-
if hasattr(self.pipe, 'text_encoder'):
|
| 309 |
-
pipe_kwargs["clip_skip"] = 2
|
| 310 |
-
|
| 311 |
# Configure ControlNet inputs
|
| 312 |
-
if using_multiple_controlnets and has_detected_faces:
|
| 313 |
-
print("Using
|
| 314 |
-
control_images = [
|
| 315 |
-
conditioning_scales = [
|
| 316 |
|
| 317 |
-
pipe_kwargs["
|
| 318 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
|
|
|
| 322 |
|
| 323 |
-
elif using_multiple_controlnets
|
| 324 |
-
print("Multiple ControlNets available but no faces detected")
|
|
|
|
| 325 |
control_images = [depth_image, depth_image]
|
| 326 |
-
conditioning_scales = [
|
| 327 |
|
| 328 |
-
pipe_kwargs["
|
| 329 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 330 |
|
| 331 |
else:
|
| 332 |
-
print("Using Depth ControlNet only")
|
| 333 |
-
pipe_kwargs["
|
| 334 |
-
pipe_kwargs["controlnet_conditioning_scale"] =
|
| 335 |
|
| 336 |
# Generate
|
| 337 |
-
|
|
|
|
| 338 |
result = self.pipe(**pipe_kwargs)
|
| 339 |
|
| 340 |
return result.images[0]
|
| 341 |
|
| 342 |
# Initialize converter
|
| 343 |
print("Initializing RetroArt Converter...")
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
|
| 346 |
@spaces.GPU
|
| 347 |
def process_image(
|
|
@@ -350,25 +397,31 @@ def process_image(
|
|
| 350 |
negative_prompt,
|
| 351 |
steps,
|
| 352 |
guidance_scale,
|
|
|
|
| 353 |
controlnet_scale,
|
| 354 |
lora_scale,
|
| 355 |
-
|
| 356 |
-
|
|
|
|
| 357 |
):
|
| 358 |
if image is None:
|
| 359 |
return None
|
| 360 |
|
| 361 |
try:
|
|
|
|
|
|
|
|
|
|
| 362 |
result = converter.generate_retro_art(
|
| 363 |
input_image=image,
|
| 364 |
prompt=prompt,
|
| 365 |
negative_prompt=negative_prompt,
|
| 366 |
num_inference_steps=int(steps),
|
| 367 |
guidance_scale=guidance_scale,
|
|
|
|
| 368 |
controlnet_conditioning_scale=controlnet_scale,
|
| 369 |
lora_scale=lora_scale,
|
| 370 |
-
|
| 371 |
-
|
| 372 |
)
|
| 373 |
return result
|
| 374 |
except Exception as e:
|
|
@@ -378,36 +431,26 @@ def process_image(
|
|
| 378 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 379 |
|
| 380 |
# Gradio UI
|
| 381 |
-
with gr.Blocks(title="RetroArt Converter -
|
| 382 |
gr.Markdown("""
|
| 383 |
-
# ๐ฎ RetroArt Converter (
|
| 384 |
|
| 385 |
-
Convert images into retro pixel art style
|
| 386 |
|
| 387 |
-
**โจ
|
| 388 |
-
-
|
| 389 |
-
-
|
| 390 |
-
-
|
| 391 |
-
-
|
| 392 |
-
-
|
| 393 |
""")
|
| 394 |
|
| 395 |
# Model status
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
gr.Markdown(status_text)
|
| 402 |
-
|
| 403 |
-
gr.Markdown(f"""
|
| 404 |
-
**โ๏ธ LCM Configuration:**
|
| 405 |
-
- Scheduler: LCM (Latent Consistency Model)
|
| 406 |
-
- Recommended Steps: **12** (fast!)
|
| 407 |
-
- Recommended CFG: **1.0-1.5** (lower than normal)
|
| 408 |
-
- CLIP Skip: **2**
|
| 409 |
-
- LORA Trigger: `{TRIGGER_WORD}` (auto-added)
|
| 410 |
-
""")
|
| 411 |
|
| 412 |
with gr.Row():
|
| 413 |
with gr.Column():
|
|
@@ -426,31 +469,38 @@ with gr.Blocks(title="RetroArt Converter - LCM", theme=gr.themes.Soft()) as demo
|
|
| 426 |
lines=2
|
| 427 |
)
|
| 428 |
|
| 429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
steps = gr.Slider(
|
| 431 |
minimum=4,
|
| 432 |
-
maximum=
|
| 433 |
value=12,
|
| 434 |
step=1,
|
| 435 |
-
label="Inference Steps (
|
| 436 |
)
|
| 437 |
|
| 438 |
guidance_scale = gr.Slider(
|
| 439 |
minimum=0.5,
|
| 440 |
-
maximum=
|
| 441 |
value=1.0,
|
| 442 |
step=0.1,
|
| 443 |
-
label="Guidance Scale (
|
| 444 |
)
|
| 445 |
|
| 446 |
-
|
| 447 |
minimum=0.3,
|
| 448 |
-
maximum=1.
|
| 449 |
-
value=0.
|
| 450 |
step=0.05,
|
| 451 |
-
label="
|
| 452 |
)
|
| 453 |
-
|
|
|
|
| 454 |
lora_scale = gr.Slider(
|
| 455 |
minimum=0.5,
|
| 456 |
maximum=1.5,
|
|
@@ -458,22 +508,32 @@ with gr.Blocks(title="RetroArt Converter - LCM", theme=gr.themes.Soft()) as demo
|
|
| 458 |
step=0.05,
|
| 459 |
label="RetroArt LORA Scale"
|
| 460 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
-
with gr.Accordion("
|
| 463 |
-
|
| 464 |
minimum=0,
|
| 465 |
-
maximum=
|
| 466 |
-
value=0.
|
| 467 |
-
step=0.
|
| 468 |
-
label="
|
|
|
|
| 469 |
)
|
| 470 |
|
| 471 |
-
|
| 472 |
minimum=0,
|
| 473 |
maximum=1.0,
|
| 474 |
-
value=0.
|
| 475 |
step=0.05,
|
| 476 |
-
label="
|
|
|
|
| 477 |
)
|
| 478 |
|
| 479 |
generate_btn = gr.Button("๐จ Generate Retro Art", variant="primary", size="lg")
|
|
@@ -484,27 +544,53 @@ with gr.Blocks(title="RetroArt Converter - LCM", theme=gr.themes.Soft()) as demo
|
|
| 484 |
gr.Markdown("""
|
| 485 |
### ๐ก Tips for Best Results:
|
| 486 |
|
| 487 |
-
**
|
| 488 |
-
- โ
|
| 489 |
-
- โ
|
| 490 |
-
|
| 491 |
-
|
|
|
|
|
|
|
|
|
|
| 492 |
|
| 493 |
-
**For Quality:**
|
| 494 |
-
- Use high-resolution input images
|
| 495 |
-
-
|
| 496 |
-
-
|
|
|
|
| 497 |
|
| 498 |
-
**
|
| 499 |
-
-
|
| 500 |
-
-
|
|
|
|
| 501 |
""")
|
| 502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
generate_btn.click(
|
| 504 |
fn=process_image,
|
| 505 |
inputs=[
|
| 506 |
-
input_image, prompt, negative_prompt, steps, guidance_scale,
|
| 507 |
-
controlnet_scale, lora_scale,
|
| 508 |
],
|
| 509 |
outputs=[output_image]
|
| 510 |
)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from diffusers import (
|
|
|
|
|
|
|
| 5 |
ControlNetModel,
|
| 6 |
AutoencoderKL,
|
| 7 |
+
DPMSolverMultistepScheduler,
|
| 8 |
+
LCMScheduler
|
| 9 |
)
|
| 10 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 11 |
from insightface.app import FaceAnalysis
|
| 12 |
from PIL import Image
|
| 13 |
import numpy as np
|
| 14 |
import cv2
|
|
|
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
import os
|
| 17 |
|
| 18 |
+
# Import the custom img2img pipeline with InstantID
|
| 19 |
+
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
| 20 |
+
|
| 21 |
+
# Import ZoeDetector for better depth maps
|
| 22 |
+
from controlnet_aux import ZoeDetector
|
| 23 |
+
|
| 24 |
# Configuration
|
| 25 |
MODEL_REPO = "primerz/pixagram"
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 34 |
print(f"LORA Trigger Word: {TRIGGER_WORD}")
|
| 35 |
|
| 36 |
class RetroArtConverter:
|
| 37 |
+
def __init__(self, use_lcm=False):
|
| 38 |
self.device = device
|
| 39 |
self.dtype = dtype
|
| 40 |
+
self.use_lcm = use_lcm
|
| 41 |
self.models_loaded = {
|
| 42 |
'custom_checkpoint': False,
|
| 43 |
'lora': False,
|
|
|
|
| 45 |
}
|
| 46 |
|
| 47 |
# Initialize face analysis for InstantID
|
| 48 |
+
print("Loading face analysis model (antelopev2)...")
|
| 49 |
try:
|
| 50 |
self.face_app = FaceAnalysis(
|
| 51 |
name='antelopev2',
|
|
|
|
| 60 |
self.face_app = None
|
| 61 |
self.face_detection_enabled = False
|
| 62 |
|
| 63 |
+
# Load ControlNet for InstantID
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
print("Loading InstantID ControlNet...")
|
| 65 |
try:
|
| 66 |
self.controlnet_instantid = ControlNetModel.from_pretrained(
|
|
|
|
| 76 |
self.controlnet_instantid = None
|
| 77 |
self.instantid_enabled = False
|
| 78 |
|
| 79 |
+
# Load ControlNet for Zoe depth
|
| 80 |
+
print("Loading Zoe Depth ControlNet...")
|
| 81 |
+
self.controlnet_depth = ControlNetModel.from_pretrained(
|
| 82 |
+
"diffusers/controlnet-zoe-depth-sdxl-1.0",
|
| 83 |
+
torch_dtype=self.dtype
|
| 84 |
+
).to(self.device)
|
| 85 |
+
|
| 86 |
+
# Load Zoe depth detector (better than DPT)
|
| 87 |
+
print("Loading Zoe depth detector...")
|
| 88 |
+
try:
|
| 89 |
+
self.zoe_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 90 |
+
self.zoe_detector.to(self.device)
|
| 91 |
+
print("โ Zoe detector loaded successfully")
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"โ ๏ธ Could not load Zoe detector: {e}")
|
| 94 |
+
self.zoe_detector = None
|
| 95 |
|
| 96 |
# Determine which controlnets to use
|
| 97 |
if self.instantid_enabled and self.controlnet_instantid is not None:
|
| 98 |
+
controlnets = [self.controlnet_instantid, self.controlnet_depth]
|
| 99 |
+
print(f"Initializing with multiple ControlNets: InstantID + Zoe Depth")
|
| 100 |
else:
|
| 101 |
controlnets = self.controlnet_depth
|
| 102 |
+
print(f"Initializing with single ControlNet: Zoe Depth only")
|
| 103 |
+
|
| 104 |
+
# Load VAE
|
| 105 |
+
print("Loading VAE...")
|
| 106 |
+
self.vae = AutoencoderKL.from_pretrained(
|
| 107 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 108 |
+
torch_dtype=self.dtype
|
| 109 |
+
).to(self.device)
|
| 110 |
|
| 111 |
# Load SDXL checkpoint from HuggingFace Hub
|
| 112 |
+
print("Loading SDXL checkpoint (horizon) from HuggingFace Hub...")
|
|
|
|
| 113 |
try:
|
| 114 |
model_path = hf_hub_download(
|
| 115 |
repo_id=MODEL_REPO,
|
| 116 |
filename="horizon.safetensors",
|
| 117 |
repo_type="model"
|
| 118 |
)
|
| 119 |
+
# Use the custom img2img pipeline for better results
|
| 120 |
+
self.pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_single_file(
|
| 121 |
model_path,
|
| 122 |
controlnet=controlnets,
|
| 123 |
+
vae=self.vae,
|
| 124 |
torch_dtype=self.dtype,
|
| 125 |
use_safetensors=True
|
| 126 |
).to(self.device)
|
| 127 |
+
print("โ Custom checkpoint loaded successfully")
|
| 128 |
self.models_loaded['custom_checkpoint'] = True
|
| 129 |
except Exception as e:
|
| 130 |
print(f"โ ๏ธ Could not load custom checkpoint: {e}")
|
| 131 |
print("Using default SDXL base model")
|
| 132 |
+
self.pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 133 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 134 |
controlnet=controlnets,
|
| 135 |
+
vae=self.vae,
|
| 136 |
torch_dtype=self.dtype,
|
| 137 |
use_safetensors=True
|
| 138 |
).to(self.device)
|
| 139 |
self.models_loaded['custom_checkpoint'] = False
|
| 140 |
|
| 141 |
+
# Load InstantID IP-Adapter
|
| 142 |
+
if self.instantid_enabled:
|
| 143 |
+
print("Loading InstantID IP-Adapter...")
|
| 144 |
+
try:
|
| 145 |
+
ip_adapter_path = hf_hub_download(
|
| 146 |
+
repo_id="InstantX/InstantID",
|
| 147 |
+
filename="ip-adapter.bin"
|
| 148 |
+
)
|
| 149 |
+
self.pipe.load_ip_adapter_instantid(ip_adapter_path)
|
| 150 |
+
self.pipe.set_ip_adapter_scale(0.8)
|
| 151 |
+
print("โ InstantID IP-Adapter loaded successfully")
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"โ ๏ธ Could not load IP-Adapter: {e}")
|
| 154 |
+
|
| 155 |
# Load LORA from HuggingFace Hub
|
| 156 |
print("Loading LORA (retroart) from HuggingFace Hub...")
|
| 157 |
try:
|
|
|
|
| 168 |
print(f"โ ๏ธ Could not load LORA: {e}")
|
| 169 |
self.models_loaded['lora'] = False
|
| 170 |
|
| 171 |
+
# Choose scheduler based on mode
|
| 172 |
+
if use_lcm:
|
| 173 |
+
print("Setting up LCM scheduler for fast generation...")
|
| 174 |
+
self.pipe.scheduler = LCMScheduler.from_config(
|
| 175 |
+
self.pipe.scheduler.config
|
| 176 |
+
)
|
| 177 |
+
else:
|
| 178 |
+
print("Setting up DPMSolverMultistep scheduler with Karras sigmas for quality...")
|
| 179 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 180 |
+
self.pipe.scheduler.config,
|
| 181 |
+
use_karras_sigmas=True
|
| 182 |
+
)
|
| 183 |
|
| 184 |
# Enable attention optimizations
|
| 185 |
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
|
|
|
| 192 |
except Exception as e:
|
| 193 |
print(f"โ ๏ธ xformers not available: {e}")
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
# Track controlnet configuration
|
| 196 |
self.using_multiple_controlnets = isinstance(controlnets, list)
|
| 197 |
print(f"Pipeline initialized with {'multiple' if self.using_multiple_controlnets else 'single'} ControlNet(s)")
|
|
|
|
| 203 |
print("===================\n")
|
| 204 |
|
| 205 |
print("โ Model initialization complete!")
|
| 206 |
+
if use_lcm:
|
| 207 |
+
print("\n=== LCM CONFIGURATION ===")
|
| 208 |
+
print("Scheduler: LCM")
|
| 209 |
+
print("Recommended Steps: 8-12")
|
| 210 |
+
print("Recommended CFG: 1.0-1.5")
|
| 211 |
+
print("Recommended Strength: 0.6-0.8")
|
| 212 |
+
else:
|
| 213 |
+
print("\n=== QUALITY CONFIGURATION ===")
|
| 214 |
+
print("Scheduler: DPMSolverMultistep + Karras")
|
| 215 |
+
print("Recommended Steps: 25-40")
|
| 216 |
+
print("Recommended CFG: 5.0-7.5")
|
| 217 |
+
print("Recommended Strength: 0.4-0.7")
|
| 218 |
print(f"LORA Trigger: '{TRIGGER_WORD}'")
|
| 219 |
print("=========================\n")
|
| 220 |
|
| 221 |
def get_depth_map(self, image):
|
| 222 |
+
"""Generate depth map from input image using Zoe"""
|
| 223 |
+
if self.zoe_detector is not None:
|
| 224 |
+
# Use Zoe detector for better depth maps
|
| 225 |
+
depth_image = self.zoe_detector(image)
|
| 226 |
+
return depth_image
|
| 227 |
+
else:
|
| 228 |
+
# Fallback to basic conversion
|
| 229 |
+
img_array = np.array(image.convert('L'))
|
| 230 |
+
depth_colored = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
| 231 |
+
return Image.fromarray(depth_colored)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
def calculate_optimal_size(self, original_width, original_height):
|
| 234 |
"""Calculate optimal size from recommended resolutions"""
|
| 235 |
aspect_ratio = original_width / original_height
|
| 236 |
|
| 237 |
+
# Recommended resolutions for SDXL
|
| 238 |
recommended_sizes = [
|
| 239 |
(896, 1152), # Portrait
|
| 240 |
(1152, 896), # Landscape
|
|
|
|
| 272 |
input_image,
|
| 273 |
prompt="retro game character, vibrant colors, detailed",
|
| 274 |
negative_prompt="blurry, low quality, ugly, distorted",
|
| 275 |
+
num_inference_steps=25,
|
| 276 |
+
guidance_scale=5.0,
|
| 277 |
+
strength=0.6, # img2img strength
|
| 278 |
controlnet_conditioning_scale=0.8,
|
| 279 |
lora_scale=1.0,
|
| 280 |
+
face_strength=0.85, # InstantID face strength
|
| 281 |
+
depth_control_scale=0.8 # Zoe depth strength
|
| 282 |
):
|
| 283 |
+
"""Generate retro art using img2img pipeline with face keypoints"""
|
| 284 |
|
| 285 |
# Add trigger word to prompt
|
| 286 |
prompt = self.add_trigger_word(prompt)
|
|
|
|
| 295 |
# Resize with high quality
|
| 296 |
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
|
| 297 |
|
| 298 |
+
# Generate depth map using Zoe
|
| 299 |
+
print("Generating Zoe depth map...")
|
| 300 |
depth_image = self.get_depth_map(resized_image)
|
| 301 |
+
if depth_image.size != (target_width, target_height):
|
| 302 |
+
depth_image = depth_image.resize((target_width, target_height), Image.LANCZOS)
|
| 303 |
|
| 304 |
# Handle face detection for InstantID
|
| 305 |
using_multiple_controlnets = self.using_multiple_controlnets
|
| 306 |
+
face_kps = None
|
| 307 |
face_embeddings = None
|
| 308 |
has_detected_faces = False
|
| 309 |
|
| 310 |
+
if using_multiple_controlnets and self.face_app is not None:
|
| 311 |
+
print("Detecting faces and extracting keypoints...")
|
| 312 |
img_array = np.array(resized_image)
|
| 313 |
+
faces = self.face_app.get(img_array)
|
| 314 |
|
| 315 |
if len(faces) > 0:
|
| 316 |
has_detected_faces = True
|
| 317 |
print(f"Detected {len(faces)} face(s)")
|
| 318 |
+
|
| 319 |
+
# Get the largest face
|
| 320 |
+
face = sorted(faces,
|
| 321 |
+
key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
|
| 322 |
+
|
| 323 |
+
# Extract face embeddings
|
| 324 |
+
face_embeddings = torch.from_numpy(face.normed_embedding).unsqueeze(0).to(
|
| 325 |
+
self.device, dtype=self.dtype
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# Draw keypoints (this shows age, gender, expression)
|
| 329 |
+
face_kps = draw_kps(resized_image, face.kps)
|
| 330 |
+
print(f"Face keypoints drawn (age/gender/expression preserved)")
|
| 331 |
+
else:
|
| 332 |
+
print("No faces detected in image")
|
| 333 |
|
| 334 |
# Set LORA scale
|
| 335 |
if hasattr(self.pipe, 'set_adapters') and self.models_loaded['lora']:
|
|
|
|
| 343 |
pipe_kwargs = {
|
| 344 |
"prompt": prompt,
|
| 345 |
"negative_prompt": negative_prompt,
|
| 346 |
+
"image": resized_image, # Original image for img2img
|
| 347 |
"num_inference_steps": num_inference_steps,
|
| 348 |
"guidance_scale": guidance_scale,
|
| 349 |
+
"strength": strength, # img2img denoising strength
|
|
|
|
| 350 |
"generator": torch.Generator(device=self.device).manual_seed(42)
|
| 351 |
}
|
| 352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
# Configure ControlNet inputs
|
| 354 |
+
if using_multiple_controlnets and has_detected_faces and face_kps is not None:
|
| 355 |
+
print("Using InstantID + Zoe Depth ControlNets with face keypoints")
|
| 356 |
+
control_images = [face_kps, depth_image]
|
| 357 |
+
conditioning_scales = [face_strength, depth_control_scale]
|
| 358 |
|
| 359 |
+
pipe_kwargs["control_image"] = control_images
|
| 360 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 361 |
|
| 362 |
+
# Add face embeddings through IP-Adapter
|
| 363 |
+
if face_embeddings is not None and hasattr(self.pipe, 'set_ip_adapter_scale'):
|
| 364 |
+
pipe_kwargs["ip_adapter_image_embeds"] = [face_embeddings]
|
| 365 |
|
| 366 |
+
elif using_multiple_controlnets:
|
| 367 |
+
print("Multiple ControlNets available but no faces detected - using depth only")
|
| 368 |
+
# Use depth for both to maintain structure
|
| 369 |
control_images = [depth_image, depth_image]
|
| 370 |
+
conditioning_scales = [0.0, depth_control_scale] # Disable InstantID
|
| 371 |
|
| 372 |
+
pipe_kwargs["control_image"] = control_images
|
| 373 |
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
|
| 374 |
|
| 375 |
else:
|
| 376 |
+
print("Using Zoe Depth ControlNet only")
|
| 377 |
+
pipe_kwargs["control_image"] = depth_image
|
| 378 |
+
pipe_kwargs["controlnet_conditioning_scale"] = depth_control_scale
|
| 379 |
|
| 380 |
# Generate
|
| 381 |
+
mode = "LCM" if self.use_lcm else "Quality"
|
| 382 |
+
print(f"Generating with {mode} mode: Steps={num_inference_steps}, CFG={guidance_scale}, Strength={strength}")
|
| 383 |
result = self.pipe(**pipe_kwargs)
|
| 384 |
|
| 385 |
return result.images[0]
|
| 386 |
|
| 387 |
# Initialize converter
|
| 388 |
print("Initializing RetroArt Converter...")
|
| 389 |
+
print("Choose mode: LCM (fast) or Quality (better)")
|
| 390 |
+
converter_lcm = RetroArtConverter(use_lcm=True)
|
| 391 |
+
converter_quality = RetroArtConverter(use_lcm=False)
|
| 392 |
|
| 393 |
@spaces.GPU
|
| 394 |
def process_image(
|
|
|
|
| 397 |
negative_prompt,
|
| 398 |
steps,
|
| 399 |
guidance_scale,
|
| 400 |
+
strength,
|
| 401 |
controlnet_scale,
|
| 402 |
lora_scale,
|
| 403 |
+
face_strength,
|
| 404 |
+
depth_control_scale,
|
| 405 |
+
use_lcm_mode
|
| 406 |
):
|
| 407 |
if image is None:
|
| 408 |
return None
|
| 409 |
|
| 410 |
try:
|
| 411 |
+
# Choose the right converter based on mode
|
| 412 |
+
converter = converter_lcm if use_lcm_mode else converter_quality
|
| 413 |
+
|
| 414 |
result = converter.generate_retro_art(
|
| 415 |
input_image=image,
|
| 416 |
prompt=prompt,
|
| 417 |
negative_prompt=negative_prompt,
|
| 418 |
num_inference_steps=int(steps),
|
| 419 |
guidance_scale=guidance_scale,
|
| 420 |
+
strength=strength,
|
| 421 |
controlnet_conditioning_scale=controlnet_scale,
|
| 422 |
lora_scale=lora_scale,
|
| 423 |
+
face_strength=face_strength,
|
| 424 |
+
depth_control_scale=depth_control_scale
|
| 425 |
)
|
| 426 |
return result
|
| 427 |
except Exception as e:
|
|
|
|
| 431 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 432 |
|
| 433 |
# Gradio UI
|
| 434 |
+
with gr.Blocks(title="RetroArt Converter - Improved", theme=gr.themes.Soft()) as demo:
|
| 435 |
gr.Markdown("""
|
| 436 |
+
# ๐ฎ RetroArt Converter (Improved with True Img2Img)
|
| 437 |
|
| 438 |
+
Convert images into retro pixel art style with **proper face detection** and **gender/age preservation**!
|
| 439 |
|
| 440 |
+
**โจ Key Improvements:**
|
| 441 |
+
- ๐ฏ **True img2img pipeline** for better structure preservation
|
| 442 |
+
- ๐ค **draw_kps**: Detects and preserves age, gender, expression
|
| 443 |
+
- ๐บ๏ธ **Zoe Depth**: Superior depth estimation
|
| 444 |
+
- โก **Dual Mode**: Fast LCM or Quality DPM++
|
| 445 |
+
- ๐จ Custom pixel art LORA with trigger: `p1x3l4rt, pixel art`
|
| 446 |
""")
|
| 447 |
|
| 448 |
# Model status
|
| 449 |
+
status_text = "**๐ฆ Loaded Models (LCM Mode):**\n"
|
| 450 |
+
status_text += f"- Custom Checkpoint: {'โ Loaded' if converter_lcm.models_loaded['custom_checkpoint'] else 'โ Using SDXL base'}\n"
|
| 451 |
+
status_text += f"- LORA (RetroArt): {'โ Loaded' if converter_lcm.models_loaded['lora'] else 'โ Disabled'}\n"
|
| 452 |
+
status_text += f"- InstantID: {'โ Loaded' if converter_lcm.models_loaded['instantid'] else 'โ Disabled'}\n"
|
| 453 |
+
gr.Markdown(status_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
with gr.Row():
|
| 456 |
with gr.Column():
|
|
|
|
| 469 |
lines=2
|
| 470 |
)
|
| 471 |
|
| 472 |
+
use_lcm_mode = gr.Checkbox(
|
| 473 |
+
label="Use LCM Mode (Fast)",
|
| 474 |
+
value=True,
|
| 475 |
+
info="Uncheck for Quality mode (slower but better)"
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
with gr.Accordion("โ๏ธ Generation Settings", open=True):
|
| 479 |
steps = gr.Slider(
|
| 480 |
minimum=4,
|
| 481 |
+
maximum=50,
|
| 482 |
value=12,
|
| 483 |
step=1,
|
| 484 |
+
label="Inference Steps (12 for LCM, 25-40 for Quality)"
|
| 485 |
)
|
| 486 |
|
| 487 |
guidance_scale = gr.Slider(
|
| 488 |
minimum=0.5,
|
| 489 |
+
maximum=15.0,
|
| 490 |
value=1.0,
|
| 491 |
step=0.1,
|
| 492 |
+
label="Guidance Scale (1.0-1.5 for LCM, 5-7.5 for Quality)"
|
| 493 |
)
|
| 494 |
|
| 495 |
+
strength = gr.Slider(
|
| 496 |
minimum=0.3,
|
| 497 |
+
maximum=1.0,
|
| 498 |
+
value=0.7,
|
| 499 |
step=0.05,
|
| 500 |
+
label="Img2Img Strength (how much to change)"
|
| 501 |
)
|
| 502 |
+
|
| 503 |
+
with gr.Accordion("๐จ Style Settings", open=True):
|
| 504 |
lora_scale = gr.Slider(
|
| 505 |
minimum=0.5,
|
| 506 |
maximum=1.5,
|
|
|
|
| 508 |
step=0.05,
|
| 509 |
label="RetroArt LORA Scale"
|
| 510 |
)
|
| 511 |
+
|
| 512 |
+
controlnet_scale = gr.Slider(
|
| 513 |
+
minimum=0.3,
|
| 514 |
+
maximum=1.2,
|
| 515 |
+
value=0.8,
|
| 516 |
+
step=0.05,
|
| 517 |
+
label="Overall ControlNet Scale"
|
| 518 |
+
)
|
| 519 |
|
| 520 |
+
with gr.Accordion("๐ค Face & Depth Settings", open=False):
|
| 521 |
+
face_strength = gr.Slider(
|
| 522 |
minimum=0,
|
| 523 |
+
maximum=2.0,
|
| 524 |
+
value=0.85,
|
| 525 |
+
step=0.05,
|
| 526 |
+
label="Face Preservation (InstantID)",
|
| 527 |
+
info="Higher = better face likeness"
|
| 528 |
)
|
| 529 |
|
| 530 |
+
depth_control_scale = gr.Slider(
|
| 531 |
minimum=0,
|
| 532 |
maximum=1.0,
|
| 533 |
+
value=0.8,
|
| 534 |
step=0.05,
|
| 535 |
+
label="Zoe Depth Control Scale",
|
| 536 |
+
info="Higher = more structure preservation"
|
| 537 |
)
|
| 538 |
|
| 539 |
generate_btn = gr.Button("๐จ Generate Retro Art", variant="primary", size="lg")
|
|
|
|
| 544 |
gr.Markdown("""
|
| 545 |
### ๐ก Tips for Best Results:
|
| 546 |
|
| 547 |
+
**Mode Selection:**
|
| 548 |
+
- โ
**LCM Mode**: 12 steps, CFG 1.0-1.5, Strength 0.6-0.8 (โก fast!)
|
| 549 |
+
- โ
**Quality Mode**: 25-40 steps, CFG 5-7.5, Strength 0.4-0.7 (๐จ better!)
|
| 550 |
+
|
| 551 |
+
**Face Preservation:**
|
| 552 |
+
- System automatically detects faces and draws keypoints
|
| 553 |
+
- Preserves age, gender, and expression characteristics
|
| 554 |
+
- Adjust "Face Preservation" slider for control
|
| 555 |
|
| 556 |
+
**For Best Quality:**
|
| 557 |
+
- Use high-resolution input images (min 512px)
|
| 558 |
+
- For portraits: enable Quality mode + high face strength
|
| 559 |
+
- For scenes: lower img2img strength for more creativity
|
| 560 |
+
- Adjust depth control for structure vs creativity balance
|
| 561 |
|
| 562 |
+
**Style Control:**
|
| 563 |
+
- LORA trigger word auto-added for pixel art style
|
| 564 |
+
- Increase LORA scale (1.2-1.5) for stronger retro effect
|
| 565 |
+
- Try: "SNES style", "16-bit RPG", "Game Boy advance style"
|
| 566 |
""")
|
| 567 |
|
| 568 |
+
# Update defaults when switching modes
|
| 569 |
+
def update_mode_defaults(use_lcm):
|
| 570 |
+
if use_lcm:
|
| 571 |
+
return (
|
| 572 |
+
gr.update(value=12), # steps
|
| 573 |
+
gr.update(value=1.0), # guidance_scale
|
| 574 |
+
gr.update(value=0.7) # strength
|
| 575 |
+
)
|
| 576 |
+
else:
|
| 577 |
+
return (
|
| 578 |
+
gr.update(value=30), # steps
|
| 579 |
+
gr.update(value=6.0), # guidance_scale
|
| 580 |
+
gr.update(value=0.6) # strength
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
use_lcm_mode.change(
|
| 584 |
+
fn=update_mode_defaults,
|
| 585 |
+
inputs=[use_lcm_mode],
|
| 586 |
+
outputs=[steps, guidance_scale, strength]
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
generate_btn.click(
|
| 590 |
fn=process_image,
|
| 591 |
inputs=[
|
| 592 |
+
input_image, prompt, negative_prompt, steps, guidance_scale, strength,
|
| 593 |
+
controlnet_scale, lora_scale, face_strength, depth_control_scale, use_lcm_mode
|
| 594 |
],
|
| 595 |
outputs=[output_image]
|
| 596 |
)
|