Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import base64 | |
| from io import BytesIO | |
| import re | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image, ImageDraw | |
| import cv2 | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from qwen_vl_utils import process_vision_info | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load Camel-Doc-OCR-062825 | |
| MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load ViLaSR-7B | |
| MODEL_ID_X = "AntResearchNLP/ViLaSR" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load OCRFlux-3B | |
| MODEL_ID_T = "ChatDOC/OCRFlux-3B" | |
| processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
| model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_T, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load ShotVL-7B | |
| MODEL_ID_S = "Vchitect/ShotVL-7B" | |
| processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True) | |
| model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_S, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Helper functions for object detection | |
| def image_to_base64(image): | |
| """Convert a PIL image to a base64-encoded string.""" | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| return img_str | |
| def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): | |
| """Draw bounding boxes on an image.""" | |
| draw = ImageDraw.Draw(image) | |
| for box in bounding_boxes: | |
| xmin, ymin, xmax, ymax = box | |
| draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) | |
| return image | |
| def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): | |
| """Rescale bounding boxes from normalized (1000x1000) to original image dimensions.""" | |
| x_scale = original_width / scaled_width | |
| y_scale = original_height / scaled_height | |
| rescaled_boxes = [] | |
| for box in bounding_boxes: | |
| xmin, ymin, xmax, ymax = box | |
| rescaled_box = [ | |
| xmin * x_scale, | |
| ymin * y_scale, | |
| xmax * x_scale, | |
| ymax * y_scale | |
| ] | |
| rescaled_boxes.append(rescaled_box) | |
| return rescaled_boxes | |
| # Default system prompt for object detection | |
| default_system_prompt = ( | |
| "You are a helpful assistant to detect objects in images. When asked to detect elements based on a description, " | |
| "you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled " | |
| "to 512 by 512 pixels. When there are more than one result, answer with a list of bounding boxes in the form " | |
| "of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]." | |
| "Parse only the boxes; don't write unnecessary content." | |
| ) | |
| # Function for object detection | |
| def run_example(image, text_input, system_prompt): | |
| """Detect objects in an image and return bounding box annotations.""" | |
| model = model_x | |
| processor = processor_x | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"}, | |
| {"type": "text", "text": system_prompt}, | |
| {"type": "text", "text": text_input}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=256) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]' | |
| matches = re.findall(pattern, str(output_text)) | |
| parsed_boxes = [[int(num) for num in match] for match in matches] | |
| scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height) | |
| annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes) | |
| return output_text[0], str(parsed_boxes), annotated_image | |
| def downsample_video(video_path): | |
| """ | |
| Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generate responses using the selected model for image input. | |
| """ | |
| if model_name == "Camel-Doc-OCR-062825": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "ViLaSR-7B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "OCRFlux-3B": | |
| processor = processor_t | |
| model = model_t | |
| elif model_name == "ShotVL-7B": | |
| processor = processor_s | |
| model = model_s | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(model_name: str, text: str, video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generate responses using the selected model for video input. | |
| """ | |
| if model_name == "Camel-Doc-OCR-062825": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "ViLaSR-7B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "OCRFlux-3B": | |
| processor = processor_t | |
| model = model_t | |
| elif model_name == "ShotVL-7B": | |
| processor = processor_s | |
| model = model_s | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": text}]} | |
| ] | |
| for frame in frames: | |
| image, timestamp = frame | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "image": image}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # Define examples for image, video, and object detection inference | |
| image_examples = [ | |
| ["convert this page to doc [text] precisely for markdown.", "images/1.png"], | |
| ["convert this page to doc [table] precisely for markdown.", "images/2.png"], | |
| ["explain the movie shot in detail.", "images/3.png"], | |
| ["fill the correct numbers.", "images/4.png"] | |
| ] | |
| video_examples = [ | |
| ["explain the ad video in detail.", "videos/1.mp4"], | |
| ["explain the video in detail.", "videos/2.mp4"] | |
| ] | |
| object_detection_examples = [ | |
| ["object/1.png", "detect red and yellow cars."], | |
| ["object/2.png", "detect the white cat."] | |
| ] | |
| # Added CSS to style the output area as a "Canvas" | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| .canvas-output { | |
| border: 2px solid #4682B4; | |
| border-radius: 10px; | |
| padding: 20px; | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown("# **[Doc VLMs v2 [Localization]](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Image") | |
| image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Video") | |
| video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=video_examples, | |
| inputs=[video_query, video_upload] | |
| ) | |
| with gr.TabItem("Object Detection / Localization"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Image", type="pil") | |
| system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt, visible=False) | |
| text_input = gr.Textbox(label="Query Input") | |
| submit_btn = gr.Button(value="Submit", elem_classes="submit-btn") | |
| with gr.Column(): | |
| model_output_text = gr.Textbox(label="Model Output Text") | |
| parsed_boxes = gr.Textbox(label="Parsed Boxes") | |
| annotated_image = gr.Image(label="Annotated Image") | |
| gr.Examples( | |
| examples=object_detection_examples, | |
| inputs=[input_img, text_input], | |
| outputs=[model_output_text, parsed_boxes, annotated_image], | |
| fn=run_example, | |
| cache_examples=True, | |
| ) | |
| submit_btn.click( | |
| fn=run_example, | |
| inputs=[input_img, text_input, system_prompt], | |
| outputs=[model_output_text, parsed_boxes, annotated_image] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(): | |
| with gr.Column(elem_classes="canvas-output"): | |
| gr.Markdown("## Result.Md") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) | |
| markdown_output = gr.Markdown(label="Formatted Result (Result.Md)") | |
| model_choice = gr.Radio( | |
| choices=["Camel-Doc-OCR-062825", "OCRFlux-3B", "ShotVL-7B", "ViLaSR-7B"], | |
| label="Select Model", | |
| value="Camel-Doc-OCR-062825" | |
| ) | |
| gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization/discussions)") | |
| gr.Markdown("> [Camel-Doc-OCR-062825](https://huggingface.co/prithivMLmods/Camel-Doc-OCR-062825) : camel-doc-ocr-062825 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for document retrieval, content extraction, and analysis recognition. built on top of the qwen2.5-vl architecture, this model enhances document comprehension capabilities.") | |
| gr.Markdown("> [OCRFlux-3B](https://huggingface.co/ChatDOC/OCRFlux-3B) : ocrflux-3b model that's fine-tuned from qwen2.5-vl-3b-instruct using our private document datasets and some data from olmocr-mix-0225 dataset. optimized for document retrieval, content extraction, and analysis recognition. the best way to use this model is via the ocrflux toolkit.") | |
| gr.Markdown("> [ViLaSR](https://huggingface.co/AntResearchNLP/ViLaSR) : vilasr-7b model as presented in reinforcing spatial reasoning in vision-language models with interwoven thinking and visual drawing. efficient reasoning capabilities.") | |
| gr.Markdown("> [ShotVL-7B](https://huggingface.co/Vchitect/ShotVL-7B) : shotvl-7b is a fine-tuned version of qwen2.5-vl-7b-instruct, trained by supervised fine-tuning on the largest and high-quality dataset for cinematic language understanding to date. it currently achieves state-of-the-art performance on shotbench.") | |
| gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.") | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| video_submit.click( | |
| fn=generate_video, | |
| inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |