Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers.image_utils import load_image
|
| 3 |
+
from threading import Thread
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
import spaces
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from transformers import (
|
| 11 |
+
Qwen2VLForConditionalGeneration,
|
| 12 |
+
AutoProcessor,
|
| 13 |
+
TextIteratorStreamer,
|
| 14 |
+
)
|
| 15 |
+
from transformers import Qwen2_5_VLForConditionalGeneration
|
| 16 |
+
|
| 17 |
+
# Helper Functions
|
| 18 |
+
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
| 19 |
+
"""
|
| 20 |
+
Returns an HTML snippet for a thin animated progress bar with a label.
|
| 21 |
+
Colors can be customized; default colors are used for Qwen2VL/Aya-Vision.
|
| 22 |
+
"""
|
| 23 |
+
return f'''
|
| 24 |
+
<div style="display: flex; align-items: center;">
|
| 25 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 26 |
+
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
| 27 |
+
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
| 28 |
+
</div>
|
| 29 |
+
</div>
|
| 30 |
+
<style>
|
| 31 |
+
@keyframes loading {{
|
| 32 |
+
0% {{ transform: translateX(-100%); }}
|
| 33 |
+
100% {{ transform: translateX(100%); }}
|
| 34 |
+
}}
|
| 35 |
+
</style>
|
| 36 |
+
'''
|
| 37 |
+
|
| 38 |
+
def downsample_video(video_path):
|
| 39 |
+
"""
|
| 40 |
+
Downsamples a video file by extracting 10 evenly spaced frames.
|
| 41 |
+
Returns a list of tuples (PIL.Image, timestamp).
|
| 42 |
+
"""
|
| 43 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 44 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 45 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 46 |
+
frames = []
|
| 47 |
+
if total_frames <= 0 or fps <= 0:
|
| 48 |
+
vidcap.release()
|
| 49 |
+
return frames
|
| 50 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 51 |
+
for i in frame_indices:
|
| 52 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 53 |
+
success, image = vidcap.read()
|
| 54 |
+
if success:
|
| 55 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 56 |
+
pil_image = Image.fromarray(image)
|
| 57 |
+
timestamp = round(i / fps, 2)
|
| 58 |
+
frames.append((pil_image, timestamp))
|
| 59 |
+
vidcap.release()
|
| 60 |
+
return frames
|
| 61 |
+
|
| 62 |
+
# Model and Processor Setup
|
| 63 |
+
QV_MODEL_ID = "Qwen/Qwen2.5-VL-32B-Instruct"
|
| 64 |
+
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
| 65 |
+
qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 66 |
+
QV_MODEL_ID,
|
| 67 |
+
trust_remote_code=True,
|
| 68 |
+
torch_dtype=torch.float16
|
| 69 |
+
).to("cuda").eval()
|
| 70 |
+
|
| 71 |
+
COREOCR_MODEL_ID = "prithivMLmods/coreOCR-7B-050325-preview"
|
| 72 |
+
coreocr_processor = AutoProcessor.from_pretrained(COREOCR_MODEL_ID, trust_remote_code=True)
|
| 73 |
+
coreocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 74 |
+
COREOCR_MODEL_ID,
|
| 75 |
+
trust_remote_code=True,
|
| 76 |
+
torch_dtype=torch.bfloat16
|
| 77 |
+
).to("cuda").eval()
|
| 78 |
+
|
| 79 |
+
# Main Inference Function
|
| 80 |
+
@spaces.GPU
|
| 81 |
+
def model_inference(message, history, use_coreocr):
|
| 82 |
+
text = message["text"].strip()
|
| 83 |
+
files = message.get("files", [])
|
| 84 |
+
|
| 85 |
+
if not text and not files:
|
| 86 |
+
yield "Error: Please input a text query or provide image or video files."
|
| 87 |
+
return
|
| 88 |
+
|
| 89 |
+
# Process files: images and videos
|
| 90 |
+
image_list = []
|
| 91 |
+
for idx, file in enumerate(files):
|
| 92 |
+
if file.lower().endswith((".mp4", ".avi", ".mov")):
|
| 93 |
+
frames = downsample_video(file)
|
| 94 |
+
if not frames:
|
| 95 |
+
yield "Error: Could not extract frames from the video."
|
| 96 |
+
return
|
| 97 |
+
for frame, timestamp in frames:
|
| 98 |
+
label = f"Video {idx+1} Frame {timestamp}:"
|
| 99 |
+
image_list.append((label, frame))
|
| 100 |
+
else:
|
| 101 |
+
try:
|
| 102 |
+
img = load_image(file)
|
| 103 |
+
label = f"Image {idx+1}:"
|
| 104 |
+
image_list.append((label, img))
|
| 105 |
+
except Exception as e:
|
| 106 |
+
yield f"Error loading image: {str(e)}"
|
| 107 |
+
return
|
| 108 |
+
|
| 109 |
+
# Build content list
|
| 110 |
+
content = [{"type": "text", "text": text}]
|
| 111 |
+
for label, img in image_list:
|
| 112 |
+
content.append({"type": "text", "text": label})
|
| 113 |
+
content.append({"type": "image", "image": img})
|
| 114 |
+
|
| 115 |
+
messages = [{"role": "user", "content": content}]
|
| 116 |
+
|
| 117 |
+
# Select processor and model
|
| 118 |
+
if use_coreocr:
|
| 119 |
+
processor = coreocr_processor
|
| 120 |
+
model = coreocr_model
|
| 121 |
+
model_name = "CoreOCR"
|
| 122 |
+
else:
|
| 123 |
+
processor = qwen_processor
|
| 124 |
+
model = qwen_model
|
| 125 |
+
model_name = "Qwen2VL OCR"
|
| 126 |
+
|
| 127 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 128 |
+
all_images = [item["image"] for item in content if item["type"] == "image"]
|
| 129 |
+
inputs = processor(
|
| 130 |
+
text=[prompt_full],
|
| 131 |
+
images=all_images if all_images else None,
|
| 132 |
+
return_tensors="pt",
|
| 133 |
+
padding=True,
|
| 134 |
+
).to("cuda")
|
| 135 |
+
|
| 136 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 137 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 138 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 139 |
+
thread.start()
|
| 140 |
+
buffer = ""
|
| 141 |
+
yield progress_bar_html(f"Processing with {model_name}")
|
| 142 |
+
for new_text in streamer:
|
| 143 |
+
buffer += new_text
|
| 144 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 145 |
+
time.sleep(0.01)
|
| 146 |
+
yield buffer
|
| 147 |
+
|
| 148 |
+
# Gradio Interface
|
| 149 |
+
examples = [
|
| 150 |
+
[{"text": "OCR the text in the image", "files": ["example/image1.jpg"]}],
|
| 151 |
+
[{"text": "Describe the content of the image", "files": ["example/image2.jpg"]}],
|
| 152 |
+
[{"text": "Extract the image content", "files": ["example/image3.jpg"]}],
|
| 153 |
+
]
|
| 154 |
+
|
| 155 |
+
demo = gr.ChatInterface(
|
| 156 |
+
fn=model_inference,
|
| 157 |
+
description="# **CoreOCR `VL/OCR`**",
|
| 158 |
+
examples=examples,
|
| 159 |
+
textbox=gr.MultimodalTextbox(
|
| 160 |
+
label="Query Input",
|
| 161 |
+
file_types=["image", "video"],
|
| 162 |
+
file_count="multiple",
|
| 163 |
+
placeholder="Input your query and optionally upload image(s) or video(s). Select the model using the checkbox."
|
| 164 |
+
),
|
| 165 |
+
stop_btn="Stop Generation",
|
| 166 |
+
multimodal=True,
|
| 167 |
+
cache_examples=False,
|
| 168 |
+
theme="bethecloud/storj_theme",
|
| 169 |
+
additional_inputs=[gr.Checkbox(label="Use CoreOCR", value=True, info="Check to use CoreOCR, uncheck to use Qwen2VL OCR")],
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
demo.launch(debug=True, ssr_mode=False)
|