Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -2,9 +2,11 @@ import os
|
|
| 2 |
import random
|
| 3 |
import uuid
|
| 4 |
import json
|
|
|
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
|
@@ -14,16 +16,81 @@ from PIL import Image
|
|
| 14 |
import cv2
|
| 15 |
|
| 16 |
from transformers import (
|
| 17 |
-
Qwen2VLForConditionalGeneration,
|
| 18 |
Qwen2_5_VLForConditionalGeneration,
|
| 19 |
-
|
| 20 |
AutoProcessor,
|
|
|
|
| 21 |
TextIteratorStreamer,
|
| 22 |
)
|
| 23 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Constants for text generation
|
| 26 |
-
MAX_MAX_NEW_TOKENS =
|
| 27 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 28 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 29 |
|
|
@@ -84,7 +151,7 @@ def downsample_video(video_path):
|
|
| 84 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 85 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 86 |
frames = []
|
| 87 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 88 |
for i in frame_indices:
|
| 89 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 90 |
success, image = vidcap.read()
|
|
@@ -108,17 +175,13 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 108 |
Yields raw text and Markdown-formatted text.
|
| 109 |
"""
|
| 110 |
if model_name == "docscopeOCR-7B-050425-exp":
|
| 111 |
-
processor = processor_m
|
| 112 |
-
model = model_m
|
| 113 |
elif model_name == "coreOCR-7B-050325-preview":
|
| 114 |
-
processor = processor_x
|
| 115 |
-
model = model_x
|
| 116 |
elif model_name == "MonkeyOCR-Recognition":
|
| 117 |
-
processor = processor_g
|
| 118 |
-
model = model_g
|
| 119 |
elif model_name == "Camel-Doc-OCR-080125(v2)":
|
| 120 |
-
processor = processor_o
|
| 121 |
-
model = model_o
|
| 122 |
else:
|
| 123 |
yield "Invalid model selected.", "Invalid model selected."
|
| 124 |
return
|
|
@@ -130,7 +193,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 130 |
messages = [{
|
| 131 |
"role": "user",
|
| 132 |
"content": [
|
| 133 |
-
{"type": "image"
|
| 134 |
{"type": "text", "text": text},
|
| 135 |
]
|
| 136 |
}]
|
|
@@ -140,8 +203,8 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 140 |
images=[image],
|
| 141 |
return_tensors="pt",
|
| 142 |
padding=True,
|
| 143 |
-
truncation=
|
| 144 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 145 |
).to(device)
|
| 146 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 147 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
|
@@ -166,17 +229,13 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 166 |
Yields raw text and Markdown-formatted text.
|
| 167 |
"""
|
| 168 |
if model_name == "docscopeOCR-7B-050425-exp":
|
| 169 |
-
processor = processor_m
|
| 170 |
-
model = model_m
|
| 171 |
elif model_name == "coreOCR-7B-050325-preview":
|
| 172 |
-
processor = processor_x
|
| 173 |
-
model = model_x
|
| 174 |
elif model_name == "MonkeyOCR-Recognition":
|
| 175 |
-
processor = processor_g
|
| 176 |
-
model = model_g
|
| 177 |
elif model_name == "Camel-Doc-OCR-080125(v2)":
|
| 178 |
-
processor = processor_o
|
| 179 |
-
model = model_o
|
| 180 |
else:
|
| 181 |
yield "Invalid model selected.", "Invalid model selected."
|
| 182 |
return
|
|
@@ -200,8 +259,8 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 200 |
add_generation_prompt=True,
|
| 201 |
return_dict=True,
|
| 202 |
return_tensors="pt",
|
| 203 |
-
truncation=
|
| 204 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 205 |
).to(device)
|
| 206 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 207 |
generation_kwargs = {
|
|
@@ -236,83 +295,62 @@ image_examples = [
|
|
| 236 |
video_examples = [
|
| 237 |
["Explain the video in detail", "videos/2.mp4"],
|
| 238 |
["Explain the video in detail", "videos/1.mp4"]
|
| 239 |
-
|
| 240 |
]
|
| 241 |
|
| 242 |
css = """
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
color: white !important;
|
| 246 |
}
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
}
|
| 250 |
-
.canvas-output {
|
| 251 |
-
border: 2px solid #4682B4;
|
| 252 |
-
border-radius: 10px;
|
| 253 |
-
padding: 20px;
|
| 254 |
}
|
| 255 |
"""
|
| 256 |
|
| 257 |
# Create the Gradio Interface
|
| 258 |
-
with gr.Blocks(css=css, theme=
|
| 259 |
-
gr.Markdown("# **
|
| 260 |
with gr.Row():
|
| 261 |
-
with gr.Column():
|
| 262 |
with gr.Tabs():
|
| 263 |
with gr.TabItem("Image Inference"):
|
| 264 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 265 |
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 266 |
-
image_submit = gr.Button("Submit",
|
| 267 |
-
gr.Examples(
|
| 268 |
-
examples=image_examples,
|
| 269 |
-
inputs=[image_query, image_upload]
|
| 270 |
-
)
|
| 271 |
with gr.TabItem("Video Inference"):
|
| 272 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 273 |
video_upload = gr.Video(label="Video", height=290)
|
| 274 |
-
video_submit = gr.Button("Submit",
|
| 275 |
-
gr.Examples(
|
| 276 |
-
examples=video_examples,
|
| 277 |
-
inputs=[video_query, video_upload]
|
| 278 |
-
)
|
| 279 |
with gr.Accordion("Advanced options", open=False):
|
| 280 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 281 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 282 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 283 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 284 |
-
|
| 285 |
|
| 286 |
-
with gr.Column():
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
with gr.Accordion("(Result.md)", open=False):
|
| 292 |
-
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 293 |
|
| 294 |
model_choice = gr.Radio(
|
| 295 |
choices=["Camel-Doc-OCR-080125(v2)", "docscopeOCR-7B-050425-exp", "MonkeyOCR-Recognition", "coreOCR-7B-050325-preview"],
|
| 296 |
label="Select Model",
|
| 297 |
value="Camel-Doc-OCR-080125(v2)"
|
| 298 |
)
|
| 299 |
-
|
| 300 |
-
gr.Markdown("> [docscopeOCR-7B-050425-exp](https://huggingface.co/prithivMLmods/docscopeOCR-7B-050425-exp): The docscopeOCR-7B-050425-exp model is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Document-Level Optical Character Recognition (OCR), long-context vision-language understanding, and accurate image-to-text conversion with mathematical LaTeX formatting.")
|
| 301 |
-
gr.Markdown("> [MonkeyOCR](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
|
| 302 |
-
gr.Markdown("> [Camel-Doc-OCR-080125](https://huggingface.co/prithivMLmods/Camel-Doc-OCR-080125): The Camel-Doc-OCR-080125 model is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Document Retrieval, Content Extraction, and Analysis Recognition. Built on top of the Qwen2.5-VL architecture, this model enhances document comprehension capabilities")
|
| 303 |
-
gr.Markdown("> [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): The coreOCR-7B-050325-preview model is a fine-tuned version of Qwen2-VL-7B, optimized for Document-Level Optical Character Recognition (OCR), long-context vision-language understanding, and accurate image-to-text conversion with mathematical LaTeX formatting.")
|
| 304 |
-
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 305 |
-
|
| 306 |
image_submit.click(
|
| 307 |
fn=generate_image,
|
| 308 |
-
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k,
|
| 309 |
outputs=[output, markdown_output]
|
| 310 |
)
|
| 311 |
video_submit.click(
|
| 312 |
fn=generate_video,
|
| 313 |
-
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k,
|
| 314 |
outputs=[output, markdown_output]
|
| 315 |
)
|
| 316 |
|
| 317 |
if __name__ == "__main__":
|
| 318 |
-
demo.queue(max_size=
|
|
|
|
| 2 |
import random
|
| 3 |
import uuid
|
| 4 |
import json
|
| 5 |
+
import requests
|
| 6 |
import time
|
| 7 |
import asyncio
|
| 8 |
from threading import Thread
|
| 9 |
+
from typing import Iterable
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
|
|
|
| 16 |
import cv2
|
| 17 |
|
| 18 |
from transformers import (
|
|
|
|
| 19 |
Qwen2_5_VLForConditionalGeneration,
|
| 20 |
+
Qwen2VLForConditionalGeneration,
|
| 21 |
AutoProcessor,
|
| 22 |
+
AutoTokenizer,
|
| 23 |
TextIteratorStreamer,
|
| 24 |
)
|
| 25 |
+
from gradio.themes import Soft
|
| 26 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 27 |
+
|
| 28 |
+
# --- Theme and CSS Definition ---
|
| 29 |
+
|
| 30 |
+
colors.steel_blue = colors.Color(
|
| 31 |
+
name="steel_blue",
|
| 32 |
+
c50="#EBF3F8",
|
| 33 |
+
c100="#D3E5F0",
|
| 34 |
+
c200="#A8CCE1",
|
| 35 |
+
c300="#7DB3D2",
|
| 36 |
+
c400="#529AC3",
|
| 37 |
+
c500="#4682B4", # SteelBlue base color
|
| 38 |
+
c600="#3E72A0",
|
| 39 |
+
c700="#36638C",
|
| 40 |
+
c800="#2E5378",
|
| 41 |
+
c900="#264364",
|
| 42 |
+
c950="#1E3450",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
class SteelBlueTheme(Soft):
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
*,
|
| 49 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 50 |
+
secondary_hue: colors.Color | str = colors.steel_blue,
|
| 51 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 52 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 53 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 54 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 55 |
+
),
|
| 56 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 57 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 58 |
+
),
|
| 59 |
+
):
|
| 60 |
+
super().__init__(
|
| 61 |
+
primary_hue=primary_hue,
|
| 62 |
+
secondary_hue=secondary_hue,
|
| 63 |
+
neutral_hue=neutral_hue,
|
| 64 |
+
text_size=text_size,
|
| 65 |
+
font=font,
|
| 66 |
+
font_mono=font_mono,
|
| 67 |
+
)
|
| 68 |
+
super().set(
|
| 69 |
+
background_fill_primary="*primary_50",
|
| 70 |
+
background_fill_primary_dark="*primary_900",
|
| 71 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 72 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 73 |
+
button_primary_text_color="white",
|
| 74 |
+
button_primary_text_color_hover="white",
|
| 75 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 76 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 77 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 78 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 79 |
+
slider_color="*secondary_500",
|
| 80 |
+
slider_color_dark="*secondary_600",
|
| 81 |
+
block_title_text_weight="600",
|
| 82 |
+
block_border_width="3px",
|
| 83 |
+
block_shadow="*shadow_drop_lg",
|
| 84 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 85 |
+
button_large_padding="11px",
|
| 86 |
+
color_accent_soft="*primary_100",
|
| 87 |
+
block_label_background_fill="*primary_200",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
steel_blue_theme = SteelBlueTheme()
|
| 91 |
|
| 92 |
# Constants for text generation
|
| 93 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 94 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 95 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 96 |
|
|
|
|
| 151 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 152 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 153 |
frames = []
|
| 154 |
+
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 155 |
for i in frame_indices:
|
| 156 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 157 |
success, image = vidcap.read()
|
|
|
|
| 175 |
Yields raw text and Markdown-formatted text.
|
| 176 |
"""
|
| 177 |
if model_name == "docscopeOCR-7B-050425-exp":
|
| 178 |
+
processor, model = processor_m, model_m
|
|
|
|
| 179 |
elif model_name == "coreOCR-7B-050325-preview":
|
| 180 |
+
processor, model = processor_x, model_x
|
|
|
|
| 181 |
elif model_name == "MonkeyOCR-Recognition":
|
| 182 |
+
processor, model = processor_g, model_g
|
|
|
|
| 183 |
elif model_name == "Camel-Doc-OCR-080125(v2)":
|
| 184 |
+
processor, model = processor_o, model_o
|
|
|
|
| 185 |
else:
|
| 186 |
yield "Invalid model selected.", "Invalid model selected."
|
| 187 |
return
|
|
|
|
| 193 |
messages = [{
|
| 194 |
"role": "user",
|
| 195 |
"content": [
|
| 196 |
+
{"type": "image"},
|
| 197 |
{"type": "text", "text": text},
|
| 198 |
]
|
| 199 |
}]
|
|
|
|
| 203 |
images=[image],
|
| 204 |
return_tensors="pt",
|
| 205 |
padding=True,
|
| 206 |
+
#truncation=True,
|
| 207 |
+
#max_length=MAX_INPUT_TOKEN_LENGTH
|
| 208 |
).to(device)
|
| 209 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 210 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
|
|
|
| 229 |
Yields raw text and Markdown-formatted text.
|
| 230 |
"""
|
| 231 |
if model_name == "docscopeOCR-7B-050425-exp":
|
| 232 |
+
processor, model = processor_m, model_m
|
|
|
|
| 233 |
elif model_name == "coreOCR-7B-050325-preview":
|
| 234 |
+
processor, model = processor_x, model_x
|
|
|
|
| 235 |
elif model_name == "MonkeyOCR-Recognition":
|
| 236 |
+
processor, model = processor_g, model_g
|
|
|
|
| 237 |
elif model_name == "Camel-Doc-OCR-080125(v2)":
|
| 238 |
+
processor, model = processor_o, model_o
|
|
|
|
| 239 |
else:
|
| 240 |
yield "Invalid model selected.", "Invalid model selected."
|
| 241 |
return
|
|
|
|
| 259 |
add_generation_prompt=True,
|
| 260 |
return_dict=True,
|
| 261 |
return_tensors="pt",
|
| 262 |
+
#truncation=True,
|
| 263 |
+
#max_length=MAX_INPUT_TOKEN_LENGTH
|
| 264 |
).to(device)
|
| 265 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 266 |
generation_kwargs = {
|
|
|
|
| 295 |
video_examples = [
|
| 296 |
["Explain the video in detail", "videos/2.mp4"],
|
| 297 |
["Explain the video in detail", "videos/1.mp4"]
|
|
|
|
| 298 |
]
|
| 299 |
|
| 300 |
css = """
|
| 301 |
+
#main-title h1 {
|
| 302 |
+
font-size: 2.3em !important;
|
|
|
|
| 303 |
}
|
| 304 |
+
#output-title h2 {
|
| 305 |
+
font-size: 2.1em !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
}
|
| 307 |
"""
|
| 308 |
|
| 309 |
# Create the Gradio Interface
|
| 310 |
+
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 311 |
+
gr.Markdown("# **core OCR**", elem_id="main-title")
|
| 312 |
with gr.Row():
|
| 313 |
+
with gr.Column(scale=2):
|
| 314 |
with gr.Tabs():
|
| 315 |
with gr.TabItem("Image Inference"):
|
| 316 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 317 |
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 318 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 319 |
+
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
|
|
|
|
|
|
|
|
|
| 320 |
with gr.TabItem("Video Inference"):
|
| 321 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 322 |
video_upload = gr.Video(label="Video", height=290)
|
| 323 |
+
video_submit = gr.Button("Submit", variant="primary")
|
| 324 |
+
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
|
|
|
|
|
|
|
|
|
|
| 325 |
with gr.Accordion("Advanced options", open=False):
|
| 326 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 327 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 328 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 329 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 330 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 331 |
|
| 332 |
+
with gr.Column(scale=3):
|
| 333 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 334 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
|
| 335 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 336 |
+
markdown_output = gr.Markdown(label="(Result.Md)")
|
|
|
|
|
|
|
| 337 |
|
| 338 |
model_choice = gr.Radio(
|
| 339 |
choices=["Camel-Doc-OCR-080125(v2)", "docscopeOCR-7B-050425-exp", "MonkeyOCR-Recognition", "coreOCR-7B-050325-preview"],
|
| 340 |
label="Select Model",
|
| 341 |
value="Camel-Doc-OCR-080125(v2)"
|
| 342 |
)
|
| 343 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
image_submit.click(
|
| 345 |
fn=generate_image,
|
| 346 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 347 |
outputs=[output, markdown_output]
|
| 348 |
)
|
| 349 |
video_submit.click(
|
| 350 |
fn=generate_video,
|
| 351 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 352 |
outputs=[output, markdown_output]
|
| 353 |
)
|
| 354 |
|
| 355 |
if __name__ == "__main__":
|
| 356 |
+
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|