Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,36 +2,60 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import tiktoken
|
| 4 |
|
| 5 |
-
from model import GPTLanguageModel
|
| 6 |
|
| 7 |
# Load the model and tokenizer
|
| 8 |
def load_model():
|
| 9 |
"""Load the trained GPT model"""
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 11 |
GPT_CONFIG = {
|
| 12 |
-
"vocab_size"
|
| 13 |
-
"n_heads"
|
| 14 |
-
"n_layers"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"dropout" : 0.1,
|
| 19 |
-
"learning_rate" : 3e-4,
|
| 20 |
-
"weight_decay" : 0.1,
|
| 21 |
}
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
model.load_state_dict(torch.load("model_weights.pth", map_location=device))
|
| 24 |
model.to(device)
|
| 25 |
-
model.eval()
|
|
|
|
|
|
|
| 26 |
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
| 27 |
return model, tokenizer, device
|
| 28 |
|
| 29 |
-
# Load model globally
|
| 30 |
model, tokenizer, device = load_model()
|
| 31 |
|
| 32 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens):
|
| 34 |
-
# Build message history with system message
|
| 35 |
messages = [{"role": "system", "content": system_message}]
|
| 36 |
|
| 37 |
for val in history:
|
|
@@ -43,8 +67,11 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens)
|
|
| 43 |
# Add the user message to the conversation
|
| 44 |
messages.append({"role": "user", "content": message})
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 46 |
# Convert the latest user message to token IDs
|
| 47 |
-
input_ids = text_to_token_ids(
|
| 48 |
|
| 49 |
# Generate the response from the model
|
| 50 |
token_ids = generate_text(
|
|
@@ -56,16 +83,17 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens)
|
|
| 56 |
|
| 57 |
# Convert the token IDs back to text and return
|
| 58 |
response_text = token_ids_to_text(token_ids, tokenizer)
|
|
|
|
| 59 |
return response_text
|
| 60 |
|
| 61 |
-
# Gradio
|
| 62 |
demo = gr.ChatInterface(
|
| 63 |
-
respond,
|
| 64 |
additional_inputs=[
|
| 65 |
-
gr.Textbox(value="You are a friendly
|
| 66 |
-
gr.Slider(minimum=1, maximum=256, value=50, step=1, label="Max new tokens")
|
| 67 |
]
|
| 68 |
)
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
| 71 |
-
demo.launch(share=True)
|
|
|
|
| 2 |
import torch
|
| 3 |
import tiktoken
|
| 4 |
|
| 5 |
+
from model import GPTLanguageModel # Import the model from model.py
|
| 6 |
|
| 7 |
# Load the model and tokenizer
|
| 8 |
def load_model():
|
| 9 |
"""Load the trained GPT model"""
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
GPT_CONFIG = {
|
| 13 |
+
"vocab_size": 50257,
|
| 14 |
+
"n_heads": 8,
|
| 15 |
+
"n_layers": 6,
|
| 16 |
+
"n_embd": 512,
|
| 17 |
+
"block_size": 128,
|
| 18 |
+
"dropout": 0.1,
|
|
|
|
|
|
|
|
|
|
| 19 |
}
|
| 20 |
+
|
| 21 |
+
model = GPTLanguageModel(
|
| 22 |
+
GPT_CONFIG["vocab_size"],
|
| 23 |
+
GPT_CONFIG["n_embd"],
|
| 24 |
+
GPT_CONFIG["block_size"],
|
| 25 |
+
GPT_CONFIG["n_layers"],
|
| 26 |
+
GPT_CONFIG["n_heads"],
|
| 27 |
+
device
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Load the trained weights
|
| 31 |
model.load_state_dict(torch.load("model_weights.pth", map_location=device))
|
| 32 |
model.to(device)
|
| 33 |
+
model.eval() # Set the model to evaluation mode
|
| 34 |
+
|
| 35 |
+
# Use tiktoken for tokenization
|
| 36 |
tokenizer = tiktoken.get_encoding("gpt2")
|
| 37 |
+
|
| 38 |
return model, tokenizer, device
|
| 39 |
|
| 40 |
+
# Load the model globally
|
| 41 |
model, tokenizer, device = load_model()
|
| 42 |
|
| 43 |
+
# Tokenization and detokenization functions
|
| 44 |
+
def text_to_token_ids(text, tokenizer):
|
| 45 |
+
return torch.tensor([tokenizer.encode(text)], dtype=torch.long)
|
| 46 |
+
|
| 47 |
+
def token_ids_to_text(token_ids, tokenizer):
|
| 48 |
+
return tokenizer.decode(token_ids[0].tolist())
|
| 49 |
+
|
| 50 |
+
# Generate text function using the model
|
| 51 |
+
def generate_text(model, idx, max_new_tokens, context_size=256):
|
| 52 |
+
# Call the model's generate function
|
| 53 |
+
token_ids = model.generate(idx, max_new_tokens)
|
| 54 |
+
return token_ids
|
| 55 |
+
|
| 56 |
+
# Define the response function
|
| 57 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens):
|
| 58 |
+
# Build the message history with the system message
|
| 59 |
messages = [{"role": "system", "content": system_message}]
|
| 60 |
|
| 61 |
for val in history:
|
|
|
|
| 67 |
# Add the user message to the conversation
|
| 68 |
messages.append({"role": "user", "content": message})
|
| 69 |
|
| 70 |
+
# Concatenate the history into one context
|
| 71 |
+
conversation_history = " ".join([msg["content"] for msg in messages])
|
| 72 |
+
|
| 73 |
# Convert the latest user message to token IDs
|
| 74 |
+
input_ids = text_to_token_ids(conversation_history, tokenizer).to(device)
|
| 75 |
|
| 76 |
# Generate the response from the model
|
| 77 |
token_ids = generate_text(
|
|
|
|
| 83 |
|
| 84 |
# Convert the token IDs back to text and return
|
| 85 |
response_text = token_ids_to_text(token_ids, tokenizer)
|
| 86 |
+
|
| 87 |
return response_text
|
| 88 |
|
| 89 |
+
# Gradio Chat Interface
|
| 90 |
demo = gr.ChatInterface(
|
| 91 |
+
fn=respond,
|
| 92 |
additional_inputs=[
|
| 93 |
+
gr.Textbox(value="You are a friendly chatbot.", label="System message"), # System message input
|
| 94 |
+
gr.Slider(minimum=1, maximum=256, value=50, step=1, label="Max new tokens") # Max tokens slider
|
| 95 |
]
|
| 96 |
)
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
+
demo.launch(share=True)
|