nenene
commited on
Commit
·
4969631
1
Parent(s):
6d57fe1
run model
Browse files
app.py
CHANGED
|
@@ -1,7 +1,67 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from diffusers import DiffusionPipeline
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image, ImageOps
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from transparent_background import Remover
|
| 8 |
|
| 9 |
+
# Initialize the Diffusion Pipeline
|
| 10 |
+
model_id = "yahoo-inc/photo-background-generation"
|
| 11 |
+
pipeline = DiffusionPipeline.from_pretrained(model_id, custom_pipeline=model_id)
|
| 12 |
+
pipeline = pipeline.to('cuda')
|
| 13 |
|
| 14 |
+
def resize_with_padding(img, expected_size):
|
| 15 |
+
img.thumbnail((expected_size[0], expected_size[1]))
|
| 16 |
+
delta_width = expected_size[0] - img.size[0]
|
| 17 |
+
delta_height = expected_size[1] - img.size[1]
|
| 18 |
+
pad_width = delta_width // 2
|
| 19 |
+
pad_height = delta_height // 2
|
| 20 |
+
padding = (pad_width, pad_height, delta_width - pad_width, delta_height - pad_height)
|
| 21 |
+
return ImageOps.expand(img, padding)
|
| 22 |
+
|
| 23 |
+
def process_image(input_image, prompt):
|
| 24 |
+
# Resize and process the input image
|
| 25 |
+
img = resize_with_padding(input_image, (512, 512))
|
| 26 |
+
|
| 27 |
+
# Load background detection model
|
| 28 |
+
remover = Remover(mode='base')
|
| 29 |
+
|
| 30 |
+
# Get foreground mask
|
| 31 |
+
fg_mask = remover.process(img, type='map')
|
| 32 |
+
|
| 33 |
+
seed = 13
|
| 34 |
+
mask = ImageOps.invert(fg_mask)
|
| 35 |
+
img = resize_with_padding(img, (512, 512))
|
| 36 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 37 |
+
cond_scale = 1.0
|
| 38 |
+
|
| 39 |
+
with torch.autocast("cuda"):
|
| 40 |
+
controlnet_image = pipeline(
|
| 41 |
+
prompt=prompt,
|
| 42 |
+
image=img,
|
| 43 |
+
mask_image=mask,
|
| 44 |
+
control_image=mask,
|
| 45 |
+
num_images_per_prompt=1,
|
| 46 |
+
generator=generator,
|
| 47 |
+
num_inference_steps=20,
|
| 48 |
+
guess_mode=False,
|
| 49 |
+
controlnet_conditioning_scale=cond_scale
|
| 50 |
+
).images[0]
|
| 51 |
+
|
| 52 |
+
return controlnet_image
|
| 53 |
+
|
| 54 |
+
# Create Gradio interface
|
| 55 |
+
iface = gr.Interface(
|
| 56 |
+
fn=process_image,
|
| 57 |
+
inputs=[
|
| 58 |
+
gr.inputs.Image(type="pil", label="Upload Image"),
|
| 59 |
+
gr.inputs.Textbox(label="Enter Prompt")
|
| 60 |
+
],
|
| 61 |
+
outputs=gr.outputs.Image(label="Generated Image"),
|
| 62 |
+
title="Image Processing with Diffusion Pipeline",
|
| 63 |
+
description="Upload an image and enter a prompt to generate a new image using the diffusion model."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the interface
|
| 67 |
+
iface.launch()
|