Spaces:
Runtime error
Runtime error
Marina Pliusnina
commited on
Commit
·
c8bd9ca
1
Parent(s):
1823861
change generation parameters values
Browse files- __pycache__/rag.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- app.py +19 -19
- rag.py +4 -4
__pycache__/rag.cpython-311.pyc
ADDED
|
Binary file (3.09 kB). View file
|
|
|
__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (1.71 kB). View file
|
|
|
app.py
CHANGED
|
@@ -7,7 +7,7 @@ from urllib.error import HTTPError
|
|
| 7 |
from rag import RAG
|
| 8 |
from utils import setup
|
| 9 |
|
| 10 |
-
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", default=
|
| 11 |
SHOW_MODEL_PARAMETERS_IN_UI = os.environ.get("SHOW_MODEL_PARAMETERS_IN_UI", default="True") == "True"
|
| 12 |
|
| 13 |
setup()
|
|
@@ -44,13 +44,13 @@ def submit_input(input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sa
|
|
| 44 |
|
| 45 |
|
| 46 |
model_parameters = {
|
| 47 |
-
"
|
| 48 |
-
"
|
| 49 |
-
"
|
| 50 |
-
"
|
| 51 |
-
"
|
| 52 |
-
"
|
| 53 |
-
"
|
| 54 |
}
|
| 55 |
|
| 56 |
output = generate(input_, model_parameters)
|
|
@@ -110,17 +110,17 @@ def gradio_app():
|
|
| 110 |
with gr.Row(variant="panel"):
|
| 111 |
with gr.Accordion("Model parameters", open=False, visible=SHOW_MODEL_PARAMETERS_IN_UI):
|
| 112 |
max_new_tokens = Slider(
|
| 113 |
-
minimum=
|
| 114 |
-
maximum=
|
| 115 |
step=1,
|
| 116 |
value=MAX_NEW_TOKENS,
|
| 117 |
label="Max tokens"
|
| 118 |
)
|
| 119 |
repetition_penalty = Slider(
|
| 120 |
minimum=0.1,
|
| 121 |
-
maximum=
|
| 122 |
step=0.1,
|
| 123 |
-
value=1.
|
| 124 |
label="Repetition penalty"
|
| 125 |
)
|
| 126 |
top_k = Slider(
|
|
@@ -132,25 +132,25 @@ def gradio_app():
|
|
| 132 |
)
|
| 133 |
top_p = Slider(
|
| 134 |
minimum=0.01,
|
| 135 |
-
maximum=0
|
| 136 |
-
value=0
|
| 137 |
label="Top p"
|
| 138 |
)
|
| 139 |
do_sample = Checkbox(
|
| 140 |
-
value=
|
| 141 |
label="Do sample"
|
| 142 |
)
|
| 143 |
num_beams = Slider(
|
| 144 |
minimum=1,
|
| 145 |
-
maximum=
|
| 146 |
step=1,
|
| 147 |
-
value=
|
| 148 |
label="Beams"
|
| 149 |
)
|
| 150 |
temperature = Slider(
|
| 151 |
-
minimum=0,
|
| 152 |
maximum=1,
|
| 153 |
-
value=0.
|
| 154 |
label="Temperature"
|
| 155 |
)
|
| 156 |
|
|
|
|
| 7 |
from rag import RAG
|
| 8 |
from utils import setup
|
| 9 |
|
| 10 |
+
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", default=200))
|
| 11 |
SHOW_MODEL_PARAMETERS_IN_UI = os.environ.get("SHOW_MODEL_PARAMETERS_IN_UI", default="True") == "True"
|
| 12 |
|
| 13 |
setup()
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
model_parameters = {
|
| 47 |
+
"MAX_NEW_TOKENS": max_new_tokens,
|
| 48 |
+
"REPETITION_PENALTY": repetition_penalty,
|
| 49 |
+
"TOP_K": top_k,
|
| 50 |
+
"TOP_P": top_p,
|
| 51 |
+
"DO_SAMPLE": do_sample,
|
| 52 |
+
"NUM_BEAMS": num_beams,
|
| 53 |
+
"TEMPERATURE": temperature
|
| 54 |
}
|
| 55 |
|
| 56 |
output = generate(input_, model_parameters)
|
|
|
|
| 110 |
with gr.Row(variant="panel"):
|
| 111 |
with gr.Accordion("Model parameters", open=False, visible=SHOW_MODEL_PARAMETERS_IN_UI):
|
| 112 |
max_new_tokens = Slider(
|
| 113 |
+
minimum=50,
|
| 114 |
+
maximum=1000,
|
| 115 |
step=1,
|
| 116 |
value=MAX_NEW_TOKENS,
|
| 117 |
label="Max tokens"
|
| 118 |
)
|
| 119 |
repetition_penalty = Slider(
|
| 120 |
minimum=0.1,
|
| 121 |
+
maximum=2.0,
|
| 122 |
step=0.1,
|
| 123 |
+
value=1.0,
|
| 124 |
label="Repetition penalty"
|
| 125 |
)
|
| 126 |
top_k = Slider(
|
|
|
|
| 132 |
)
|
| 133 |
top_p = Slider(
|
| 134 |
minimum=0.01,
|
| 135 |
+
maximum=1.0,
|
| 136 |
+
value=1.0,
|
| 137 |
label="Top p"
|
| 138 |
)
|
| 139 |
do_sample = Checkbox(
|
| 140 |
+
value=False,
|
| 141 |
label="Do sample"
|
| 142 |
)
|
| 143 |
num_beams = Slider(
|
| 144 |
minimum=1,
|
| 145 |
+
maximum=4,
|
| 146 |
step=1,
|
| 147 |
+
value=1,
|
| 148 |
label="Beams"
|
| 149 |
)
|
| 150 |
temperature = Slider(
|
| 151 |
+
minimum=0.1,
|
| 152 |
maximum=1,
|
| 153 |
+
value=0.35,
|
| 154 |
label="Temperature"
|
| 155 |
)
|
| 156 |
|
rag.py
CHANGED
|
@@ -38,7 +38,7 @@ class RAG:
|
|
| 38 |
|
| 39 |
return context
|
| 40 |
|
| 41 |
-
def predict(self, instruction, context):
|
| 42 |
|
| 43 |
api_key = os.getenv("HF_TOKEN")
|
| 44 |
|
|
@@ -55,18 +55,18 @@ class RAG:
|
|
| 55 |
|
| 56 |
payload = {
|
| 57 |
"inputs": query,
|
| 58 |
-
"parameters":
|
| 59 |
}
|
| 60 |
|
| 61 |
response = requests.post(self.model_name, headers=headers, json=payload)
|
| 62 |
|
| 63 |
return response.json()[0]["generated_text"].split("###")[-1][8:-1]
|
| 64 |
|
| 65 |
-
def get_response(self, prompt: str) -> str:
|
| 66 |
|
| 67 |
context = self.get_context(prompt)
|
| 68 |
|
| 69 |
-
response = self.predict(prompt, context)
|
| 70 |
|
| 71 |
if not response:
|
| 72 |
return self.NO_ANSWER_MESSAGE
|
|
|
|
| 38 |
|
| 39 |
return context
|
| 40 |
|
| 41 |
+
def predict(self, instruction, context, model_parameters):
|
| 42 |
|
| 43 |
api_key = os.getenv("HF_TOKEN")
|
| 44 |
|
|
|
|
| 55 |
|
| 56 |
payload = {
|
| 57 |
"inputs": query,
|
| 58 |
+
"parameters": model_parameters
|
| 59 |
}
|
| 60 |
|
| 61 |
response = requests.post(self.model_name, headers=headers, json=payload)
|
| 62 |
|
| 63 |
return response.json()[0]["generated_text"].split("###")[-1][8:-1]
|
| 64 |
|
| 65 |
+
def get_response(self, prompt: str, model_parameters: dict) -> str:
|
| 66 |
|
| 67 |
context = self.get_context(prompt)
|
| 68 |
|
| 69 |
+
response = self.predict(prompt, context, model_parameters)
|
| 70 |
|
| 71 |
if not response:
|
| 72 |
return self.NO_ANSWER_MESSAGE
|