Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def respond(
|
| 11 |
message,
|
|
@@ -13,52 +177,73 @@ def respond(
|
|
| 13 |
system_message,
|
| 14 |
max_tokens,
|
| 15 |
temperature,
|
| 16 |
-
top_p
|
| 17 |
):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
temperature=temperature,
|
| 35 |
-
top_p=top_p
|
| 36 |
-
)
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
additional_inputs=[
|
| 49 |
-
gr.Textbox(
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
gr.Slider(
|
| 53 |
minimum=0.1,
|
| 54 |
maximum=1.0,
|
| 55 |
-
value=0.
|
| 56 |
step=0.05,
|
| 57 |
label="Top-p (nucleus sampling)",
|
| 58 |
),
|
| 59 |
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import requests
|
| 4 |
import gradio as gr
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
import torch
|
| 7 |
|
| 8 |
+
# Hugging Face Transformers
|
| 9 |
+
from transformers import (
|
| 10 |
+
AutoTokenizer,
|
| 11 |
+
AutoModelForCausalLM,
|
| 12 |
+
Trainer,
|
| 13 |
+
TrainingArguments,
|
| 14 |
+
pipeline
|
| 15 |
+
)
|
| 16 |
+
from datasets import Dataset
|
| 17 |
+
|
| 18 |
+
# -----------------------------
|
| 19 |
+
# 1) SCRAPING (OPTIONAL)
|
| 20 |
+
# -----------------------------
|
| 21 |
+
BASE_URL = "https://www.cia.gov"
|
| 22 |
+
ARCHIVE_URL = "https://www.cia.gov/resources/csi/studies-in-intelligence/archives/operations-subject-index/"
|
| 23 |
+
|
| 24 |
+
def get_article_links():
|
| 25 |
+
"""
|
| 26 |
+
Fetch the archive page and extract article links pointing to the CIA Studies in Intelligence.
|
| 27 |
+
"""
|
| 28 |
+
response = requests.get(ARCHIVE_URL)
|
| 29 |
+
response.raise_for_status()
|
| 30 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 31 |
+
|
| 32 |
+
links = []
|
| 33 |
+
for a_tag in soup.find_all('a', href=True):
|
| 34 |
+
href = a_tag['href']
|
| 35 |
+
if "resources/csi/studies-in-intelligence" in href.lower():
|
| 36 |
+
# Convert relative links to absolute
|
| 37 |
+
if href.startswith("/"):
|
| 38 |
+
href = BASE_URL + href
|
| 39 |
+
links.append(href)
|
| 40 |
+
|
| 41 |
+
return list(set(links)) # remove duplicates
|
| 42 |
+
|
| 43 |
+
def scrape_article_text(url):
|
| 44 |
+
"""
|
| 45 |
+
Fetch the article text from the URL if it's HTML.
|
| 46 |
+
(Skipping PDFs for demo.)
|
| 47 |
+
"""
|
| 48 |
+
response = requests.get(url)
|
| 49 |
+
response.raise_for_status()
|
| 50 |
+
content_type = response.headers.get('Content-Type', '')
|
| 51 |
+
if 'application/pdf' in content_type.lower():
|
| 52 |
+
# Skip PDFs in this simple demo.
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 56 |
+
paragraphs = soup.find_all('p')
|
| 57 |
+
article_text = "\n".join(p.get_text(strip=True) for p in paragraphs)
|
| 58 |
+
return article_text
|
| 59 |
+
|
| 60 |
+
def scrape_all_articles(article_links):
|
| 61 |
+
"""
|
| 62 |
+
Iterate through all links and gather text into a dict {url: text}.
|
| 63 |
+
"""
|
| 64 |
+
corpus_data = {}
|
| 65 |
+
for link in article_links:
|
| 66 |
+
text = scrape_article_text(link)
|
| 67 |
+
if text:
|
| 68 |
+
corpus_data[link] = text
|
| 69 |
+
return corpus_data
|
| 70 |
+
|
| 71 |
+
# -----------------------------
|
| 72 |
+
# 2) DATA CLEANING
|
| 73 |
+
# -----------------------------
|
| 74 |
+
import re
|
| 75 |
+
|
| 76 |
+
def clean_text(text):
|
| 77 |
+
# Simple cleaning: remove extra whitespace
|
| 78 |
+
text = re.sub(r'\s+', ' ', text)
|
| 79 |
+
text = text.strip()
|
| 80 |
+
return text
|
| 81 |
+
|
| 82 |
+
def prepare_dataset(corpus_data):
|
| 83 |
+
cleaned_texts = []
|
| 84 |
+
for url, text in corpus_data.items():
|
| 85 |
+
cleaned_texts.append(clean_text(text))
|
| 86 |
+
return cleaned_texts
|
| 87 |
+
|
| 88 |
+
# -----------------------------
|
| 89 |
+
# 3) FINE-TUNING (OPTIONAL)
|
| 90 |
+
# -----------------------------
|
| 91 |
+
def fine_tune_model(cleaned_texts, model_name="gpt2", output_dir="cia_agent_model"):
|
| 92 |
+
"""
|
| 93 |
+
Fine-tunes GPT-2 on your CIA corpus.
|
| 94 |
+
Warning: resource-intensive! The free Hugging Face Spaces might time out.
|
| 95 |
+
"""
|
| 96 |
+
ds = Dataset.from_dict({"text": cleaned_texts})
|
| 97 |
+
|
| 98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 99 |
+
tokenizer.pad_token = tokenizer.eos_token # GPT-2 doesn't have a pad token
|
| 100 |
+
|
| 101 |
+
def tokenize_function(examples):
|
| 102 |
+
return tokenizer(
|
| 103 |
+
examples["text"],
|
| 104 |
+
truncation=True,
|
| 105 |
+
padding="max_length",
|
| 106 |
+
max_length=128
|
| 107 |
+
)
|
| 108 |
|
| 109 |
+
tokenized_ds = ds.map(tokenize_function, batched=True)
|
| 110 |
+
|
| 111 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 112 |
+
|
| 113 |
+
training_args = TrainingArguments(
|
| 114 |
+
output_dir=output_dir,
|
| 115 |
+
overwrite_output_dir=True,
|
| 116 |
+
num_train_epochs=1, # demonstration only
|
| 117 |
+
per_device_train_batch_size=1,
|
| 118 |
+
save_steps=100,
|
| 119 |
+
save_total_limit=1,
|
| 120 |
+
logging_steps=10,
|
| 121 |
+
evaluation_strategy="no", # or 'steps'
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
trainer = Trainer(
|
| 125 |
+
model=model,
|
| 126 |
+
args=training_args,
|
| 127 |
+
train_dataset=tokenized_ds,
|
| 128 |
+
)
|
| 129 |
+
trainer.train()
|
| 130 |
+
|
| 131 |
+
trainer.save_model(output_dir)
|
| 132 |
+
tokenizer.save_pretrained(output_dir)
|
| 133 |
+
|
| 134 |
+
return model, tokenizer
|
| 135 |
+
|
| 136 |
+
# -----------------------------
|
| 137 |
+
# 4) CIAgent INFERENCE
|
| 138 |
+
# -----------------------------
|
| 139 |
+
class CIAgent:
|
| 140 |
+
def __init__(self, model_path="cia_agent_model"):
|
| 141 |
+
"""
|
| 142 |
+
Initialize a pipeline from a local fine-tuned model folder or fallback to GPT-2.
|
| 143 |
+
"""
|
| 144 |
+
if not os.path.exists(model_path):
|
| 145 |
+
model_path = "gpt2"
|
| 146 |
+
self.generator = pipeline(
|
| 147 |
+
"text-generation",
|
| 148 |
+
model=model_path,
|
| 149 |
+
tokenizer=model_path
|
| 150 |
+
)
|
| 151 |
+
self.max_length = 128
|
| 152 |
+
|
| 153 |
+
def query(self, prompt, max_length=128, temperature=0.7, top_p=0.9):
|
| 154 |
+
"""
|
| 155 |
+
Generate text from the model.
|
| 156 |
+
"""
|
| 157 |
+
outputs = self.generator(
|
| 158 |
+
prompt,
|
| 159 |
+
max_length=max_length,
|
| 160 |
+
temperature=temperature,
|
| 161 |
+
top_p=top_p,
|
| 162 |
+
num_return_sequences=1
|
| 163 |
+
)
|
| 164 |
+
return outputs[0]["generated_text"]
|
| 165 |
+
|
| 166 |
+
# -----------------------------
|
| 167 |
+
# 5) GRADIO CHAT INTERFACE
|
| 168 |
+
# -----------------------------
|
| 169 |
+
|
| 170 |
+
# Create (or load) your CIAgent. In a real workflow, you might have already
|
| 171 |
+
# fine-tuned locally and just upload the "cia_agent_model" folder to your Space.
|
| 172 |
+
agent = CIAgent(model_path="cia_agent_model") # or "gpt2" if you haven't trained
|
| 173 |
|
| 174 |
def respond(
|
| 175 |
message,
|
|
|
|
| 177 |
system_message,
|
| 178 |
max_tokens,
|
| 179 |
temperature,
|
| 180 |
+
top_p
|
| 181 |
):
|
| 182 |
+
"""
|
| 183 |
+
This function is called by Gradio's ChatInterface. It receives:
|
| 184 |
+
- message: current user message
|
| 185 |
+
- history: list of (user_text, assistant_text) pairs
|
| 186 |
+
- system_message: the "system" instruction to guide the model
|
| 187 |
+
- max_tokens, temperature, top_p: generation parameters
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
We build a 'prompt' from all conversation turns + system message.
|
| 190 |
+
Then we query the CIAgent to get one text output.
|
| 191 |
+
Since CIAgent doesn't stream tokens by default, we yield once at the end.
|
| 192 |
+
"""
|
| 193 |
+
# Build the conversation prompt
|
| 194 |
+
# For demonstration, we simply concatenate everything in a naive format.
|
| 195 |
+
# You could style it in a more advanced way for better context handling.
|
| 196 |
+
prompt = f"System: {system_message}\n\n"
|
| 197 |
+
for user_text, assistant_text in history:
|
| 198 |
+
if user_text:
|
| 199 |
+
prompt += f"User: {user_text}\n"
|
| 200 |
+
if assistant_text:
|
| 201 |
+
prompt += f"Assistant: {assistant_text}\n"
|
| 202 |
+
# Add the new user message
|
| 203 |
+
prompt += f"User: {message}\nAssistant: "
|
| 204 |
|
| 205 |
+
# Query the local CIAgent
|
| 206 |
+
response_text = agent.query(
|
| 207 |
+
prompt,
|
| 208 |
+
max_length=max_tokens,
|
| 209 |
temperature=temperature,
|
| 210 |
+
top_p=top_p
|
| 211 |
+
)
|
|
|
|
| 212 |
|
| 213 |
+
# We can yield partial tokens if we want streaming, but the pipeline
|
| 214 |
+
# returns the entire text at once. Let's yield a single chunk:
|
| 215 |
+
yield response_text
|
| 216 |
|
| 217 |
+
# Create the ChatInterface
|
|
|
|
|
|
|
|
|
|
| 218 |
demo = gr.ChatInterface(
|
| 219 |
+
fn=respond,
|
| 220 |
additional_inputs=[
|
| 221 |
+
gr.Textbox(
|
| 222 |
+
value="You are a friendly Chatbot that knows about CIA Studies in Intelligence.",
|
| 223 |
+
label="System message"
|
| 224 |
+
),
|
| 225 |
+
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
|
| 226 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 227 |
gr.Slider(
|
| 228 |
minimum=0.1,
|
| 229 |
maximum=1.0,
|
| 230 |
+
value=0.9,
|
| 231 |
step=0.05,
|
| 232 |
label="Top-p (nucleus sampling)",
|
| 233 |
),
|
| 234 |
],
|
| 235 |
)
|
| 236 |
|
|
|
|
| 237 |
if __name__ == "__main__":
|
| 238 |
+
# WARNING: Running scraping & fine-tuning on a free HF Space
|
| 239 |
+
# might exceed time/memory limits. If you do want to train, uncomment:
|
| 240 |
+
#
|
| 241 |
+
# article_links = get_article_links()
|
| 242 |
+
# corpus_data = scrape_all_articles(article_links)
|
| 243 |
+
# cleaned_texts = prepare_dataset(corpus_data)
|
| 244 |
+
# model, tokenizer = fine_tune_model(cleaned_texts)
|
| 245 |
+
#
|
| 246 |
+
# Then re-initialize agent = CIAgent("cia_agent_model")
|
| 247 |
+
#
|
| 248 |
+
# For now, just launch the Gradio chat using the existing or fallback GPT-2 model.
|
| 249 |
demo.launch()
|