Spaces:
Sleeping
Sleeping
Commit
·
6d787c4
1
Parent(s):
2f36b65
lets try this first version
Browse files- app.py +175 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset, IterableDataset
|
| 2 |
+
from functools import partial
|
| 3 |
+
from pandas import DataFrame
|
| 4 |
+
import tqdm
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
DEBUG = False
|
| 11 |
+
|
| 12 |
+
sets = {
|
| 13 |
+
"satellogic": {
|
| 14 |
+
"shards" : 3676,
|
| 15 |
+
},
|
| 16 |
+
"sentinel_1": {
|
| 17 |
+
"shards" : 1763,
|
| 18 |
+
},
|
| 19 |
+
"neon": {
|
| 20 |
+
"config" : "default",
|
| 21 |
+
"shards" : 607,
|
| 22 |
+
"path" : "data",
|
| 23 |
+
}
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
def open_dataset(dataset, set_name, split, batch_size, shard = -1):
|
| 27 |
+
global dsi, ds
|
| 28 |
+
|
| 29 |
+
if shard == -1:
|
| 30 |
+
data_files = None
|
| 31 |
+
shards = 100
|
| 32 |
+
else:
|
| 33 |
+
config = sets[set_name].get("config", set_name)
|
| 34 |
+
shards = sets[set_name]["shards"]
|
| 35 |
+
path = sets[set_name].get("path", set_name)
|
| 36 |
+
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
|
| 37 |
+
|
| 38 |
+
if DEBUG:
|
| 39 |
+
ds = lambda:None
|
| 40 |
+
ds.n_shards = 1234
|
| 41 |
+
dsi = range(100)
|
| 42 |
+
else:
|
| 43 |
+
ds = load_dataset(
|
| 44 |
+
dataset,
|
| 45 |
+
config,
|
| 46 |
+
split=split,
|
| 47 |
+
cache_dir="dataset",
|
| 48 |
+
data_files=data_files,
|
| 49 |
+
streaming=True)
|
| 50 |
+
|
| 51 |
+
dsi = iter(ds)
|
| 52 |
+
|
| 53 |
+
return (
|
| 54 |
+
gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
|
| 55 |
+
*get_images(batch_size)
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def get_images(batch_size):
|
| 59 |
+
global dsi
|
| 60 |
+
|
| 61 |
+
items = []
|
| 62 |
+
metadatas = []
|
| 63 |
+
|
| 64 |
+
for i in tqdm.trange(batch_size, desc=f"Getting images"):
|
| 65 |
+
if DEBUG:
|
| 66 |
+
image = np.random.randint(0,255,(384,384,3))
|
| 67 |
+
metadata = {"bounds":[[1,1,4,4]], }
|
| 68 |
+
else:
|
| 69 |
+
try:
|
| 70 |
+
item = next(dsi)
|
| 71 |
+
except StopIteration:
|
| 72 |
+
break
|
| 73 |
+
metadata = item["metadata"]
|
| 74 |
+
if ds.config_name == "satellogic":
|
| 75 |
+
image = np.asarray(item["rgb"][0]).astype(np.uint8)
|
| 76 |
+
items.append(image.transpose(1,2,0))
|
| 77 |
+
if ds.config_name == "sentinel_1":
|
| 78 |
+
metadata = json.loads(metadata)
|
| 79 |
+
data = np.asarray(item["10m"])
|
| 80 |
+
for i in range(data.shape[0]):
|
| 81 |
+
# Mapping of V and H to RGB. May not be correct
|
| 82 |
+
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
|
| 83 |
+
image = np.zeros((3,384,384), "uint8")
|
| 84 |
+
image[0] = data[i][0]
|
| 85 |
+
image[1] = data[i][1]
|
| 86 |
+
image[2] = (image[0]/(image[1]+0.1))*256
|
| 87 |
+
items.append(image.transpose(1,2,0))
|
| 88 |
+
if ds.config_name == "default":
|
| 89 |
+
dataRGB = np.asarray(item["rgb"]).astype("uint8")
|
| 90 |
+
dataCHM = np.asarray(item["chm"]).astype("uint8")
|
| 91 |
+
data1m = np.asarray(item["1m"]).astype("uint8")
|
| 92 |
+
for i in range(dataRGB.shape[0]):
|
| 93 |
+
image = dataRGB[i,:,:,:]
|
| 94 |
+
items.append(image.transpose(1,2,0))
|
| 95 |
+
|
| 96 |
+
image = dataCHM[i,0,:,:]
|
| 97 |
+
items.append(image)
|
| 98 |
+
|
| 99 |
+
image = data1m[i,0,:,:]
|
| 100 |
+
items.append(image)
|
| 101 |
+
metadatas.append(metadata)
|
| 102 |
+
|
| 103 |
+
return items, DataFrame(metadatas)
|
| 104 |
+
|
| 105 |
+
def skip(count, batch_size):
|
| 106 |
+
global dsi
|
| 107 |
+
|
| 108 |
+
skip = count*batch_size
|
| 109 |
+
|
| 110 |
+
gr.Info(f"Skipping {skip} images (it's slow)")
|
| 111 |
+
for i in tqdm.trange(skip, desc=f"Skipping {skip} images"):
|
| 112 |
+
if DEBUG:
|
| 113 |
+
pass
|
| 114 |
+
else:
|
| 115 |
+
next(dsi)
|
| 116 |
+
|
| 117 |
+
return get_images(batch_size)
|
| 118 |
+
|
| 119 |
+
def update_shape(rows, columns):
|
| 120 |
+
return gr.update(rows=rows, columns=columns)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
|
| 124 |
+
batch_size = gr.Number(10, label = "Batch Size", render=False)
|
| 125 |
+
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
|
| 126 |
+
table = gr.DataFrame(render = False)
|
| 127 |
+
# headers=["Index","TimeStamp","Bounds","CRS"],
|
| 128 |
+
|
| 129 |
+
gallery = gr.Gallery(
|
| 130 |
+
label="satellogic/EarthView",
|
| 131 |
+
interactive=False,
|
| 132 |
+
columns=5, rows=2, render=False)
|
| 133 |
+
|
| 134 |
+
with gr.Row():
|
| 135 |
+
dataset = gr.Textbox(label="Dataset", value="satellogic/EarthView")
|
| 136 |
+
config = gr.Dropdown(choices=["satellogic", "sentinel_1", "neon"], label="Subset", value="satellogic", )
|
| 137 |
+
split = gr.Textbox(label="Split", value="train")
|
| 138 |
+
initial_shard = gr.Number(label = "Initial shard", value=0)
|
| 139 |
+
|
| 140 |
+
gr.Button("Load (minutes)").click(
|
| 141 |
+
open_dataset,
|
| 142 |
+
inputs=[dataset, config, split, batch_size, initial_shard],
|
| 143 |
+
outputs=[shard, gallery, table])
|
| 144 |
+
|
| 145 |
+
gallery.render()
|
| 146 |
+
|
| 147 |
+
with gr.Row():
|
| 148 |
+
batch_size.render()
|
| 149 |
+
|
| 150 |
+
rows = gr.Number(2, label="Rows")
|
| 151 |
+
columns = gr.Number(5, label="Coluns")
|
| 152 |
+
|
| 153 |
+
rows.change(update_shape, [rows, columns], [gallery])
|
| 154 |
+
columns.change(update_shape, [rows, columns], [gallery])
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
shard.render()
|
| 158 |
+
shard.release(
|
| 159 |
+
open_dataset,
|
| 160 |
+
inputs=[dataset, config, split, batch_size, shard],
|
| 161 |
+
outputs=[shard, gallery, table])
|
| 162 |
+
|
| 163 |
+
btn = gr.Button("Get More Images", scale=0)
|
| 164 |
+
btn.click(get_images, [batch_size], [gallery, table])
|
| 165 |
+
btn.click()
|
| 166 |
+
|
| 167 |
+
# btn = gr.Button("Skip 10 Batches", scale=0)
|
| 168 |
+
# btn.click(partial(skip, 10), [batch], gallery)
|
| 169 |
+
|
| 170 |
+
# btn = gr.Button("Skip 25 Batches", scale=0)
|
| 171 |
+
# btn.click(partial(skip, 25), [batch], gallery)
|
| 172 |
+
|
| 173 |
+
table.render()
|
| 174 |
+
|
| 175 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
pandas
|
| 3 |
+
gradio
|
| 4 |
+
numpy
|