Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # -------------------------------------------------------------------------- | |
| # If you find this code useful, we kindly ask you to cite our paper in your work. | |
| # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
| # More information about the method can be found at https://marigoldmonodepth.github.io | |
| # -------------------------------------------------------------------------- | |
| import functools | |
| import os | |
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import torch as torch | |
| from PIL import Image | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import login | |
| from extrude import extrude_depth_3d | |
| from marigold_depth_estimation import MarigoldPipeline | |
| def process( | |
| pipe, | |
| path_input, | |
| ensemble_size, | |
| denoise_steps, | |
| processing_res, | |
| path_out_16bit=None, | |
| path_out_fp32=None, | |
| path_out_vis=None, | |
| _input_3d_plane_near=None, | |
| _input_3d_plane_far=None, | |
| _input_3d_embossing=None, | |
| _input_3d_filter_size=None, | |
| _input_3d_frame_near=None, | |
| ): | |
| if path_out_vis is not None: | |
| return ( | |
| [path_out_16bit, path_out_vis], | |
| [path_out_16bit, path_out_fp32, path_out_vis], | |
| ) | |
| input_image = Image.open(path_input) | |
| pipe_out = pipe( | |
| input_image, | |
| ensemble_size=ensemble_size, | |
| denoising_steps=denoise_steps, | |
| processing_res=processing_res, | |
| batch_size=1 if processing_res == 0 else 0, | |
| show_progress_bar=True, | |
| ) | |
| depth_pred = pipe_out.depth_np | |
| depth_colored = pipe_out.depth_colored | |
| depth_16bit = (depth_pred * 65535.0).astype(np.uint16) | |
| path_output_dir = os.path.splitext(path_input)[0] + "_output" | |
| os.makedirs(path_output_dir, exist_ok=True) | |
| name_base = os.path.splitext(os.path.basename(path_input))[0] | |
| path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") | |
| path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") | |
| path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") | |
| np.save(path_out_fp32, depth_pred) | |
| Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") | |
| depth_colored.save(path_out_vis) | |
| return ( | |
| [path_out_16bit, path_out_vis], | |
| [path_out_16bit, path_out_fp32, path_out_vis], | |
| ) | |
| def process_3d( | |
| input_image, | |
| files, | |
| size_longest_px, | |
| size_longest_cm, | |
| filter_size, | |
| plane_near, | |
| plane_far, | |
| embossing, | |
| frame_thickness, | |
| frame_near, | |
| frame_far, | |
| ): | |
| if input_image is None or len(files) < 1: | |
| raise gr.Error( | |
| "Please upload an image (or use examples) and compute depth first" | |
| ) | |
| if plane_near >= plane_far: | |
| raise gr.Error("NEAR plane must have a value smaller than the FAR plane") | |
| def _process_3d( | |
| size_longest_px, | |
| filter_size, | |
| vertex_colors, | |
| scene_lights, | |
| output_model_scale=None, | |
| prepare_for_3d_printing=False, | |
| ): | |
| image_rgb = input_image | |
| image_depth = files[0] | |
| image_rgb_basename, image_rgb_ext = os.path.splitext(image_rgb) | |
| image_depth_basename, image_depth_ext = os.path.splitext(image_depth) | |
| image_rgb_content = Image.open(image_rgb) | |
| image_rgb_w, image_rgb_h = image_rgb_content.width, image_rgb_content.height | |
| image_rgb_d = max(image_rgb_w, image_rgb_h) | |
| image_new_w = size_longest_px * image_rgb_w // image_rgb_d | |
| image_new_h = size_longest_px * image_rgb_h // image_rgb_d | |
| image_rgb_new = image_rgb_basename + f"_{size_longest_px}" + image_rgb_ext | |
| image_depth_new = image_depth_basename + f"_{size_longest_px}" + image_depth_ext | |
| image_rgb_content.resize((image_new_w, image_new_h), Image.LANCZOS).save( | |
| image_rgb_new | |
| ) | |
| Image.open(image_depth).resize((image_new_w, image_new_h), Image.BILINEAR).save( | |
| image_depth_new | |
| ) | |
| path_glb, path_stl = extrude_depth_3d( | |
| image_rgb_new, | |
| image_depth_new, | |
| output_model_scale=( | |
| size_longest_cm * 10 | |
| if output_model_scale is None | |
| else output_model_scale | |
| ), | |
| filter_size=filter_size, | |
| coef_near=plane_near, | |
| coef_far=plane_far, | |
| emboss=embossing / 100, | |
| f_thic=frame_thickness / 100, | |
| f_near=frame_near / 100, | |
| f_back=frame_far / 100, | |
| vertex_colors=vertex_colors, | |
| scene_lights=scene_lights, | |
| prepare_for_3d_printing=prepare_for_3d_printing, | |
| ) | |
| return path_glb, path_stl | |
| path_viewer_glb, _ = _process_3d( | |
| 256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1 | |
| ) | |
| path_files_glb, path_files_stl = _process_3d( | |
| size_longest_px, | |
| filter_size, | |
| vertex_colors=True, | |
| scene_lights=False, | |
| prepare_for_3d_printing=True, | |
| ) | |
| return path_viewer_glb, [path_files_glb, path_files_stl] | |
| def run_demo_server(pipe): | |
| process_pipe = spaces.GPU(functools.partial(process, pipe), duration=120) | |
| os.environ["GRADIO_ALLOW_FLAGGING"] = "never" | |
| with gr.Blocks( | |
| analytics_enabled=False, | |
| title="Marigold Depth Estimation", | |
| css=""" | |
| #download { | |
| height: 118px; | |
| } | |
| .slider .inner { | |
| width: 5px; | |
| background: #FFF; | |
| } | |
| .viewport { | |
| aspect-ratio: 4/3; | |
| } | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| h2 { | |
| text-align: center; | |
| display: block; | |
| } | |
| h3 { | |
| text-align: center; | |
| display: block; | |
| } | |
| """, | |
| ) as demo: | |
| gr.Markdown( | |
| """ | |
| # Marigold Depth Estimation | |
| <p align="center"> | |
| <a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
| </a> | |
| <a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
| </a> | |
| <a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
| </a> | |
| <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social"> | |
| </a> | |
| </p> | |
| Marigold is the state-of-the-art depth estimator for images in the wild. | |
| Upload your image into the <b>first</b> pane, or click any of the <b>examples</b> below. | |
| The result will be computed and appear in the <b>second</b> pane. | |
| Scroll down to use the computed depth map for creating a 3D printable asset. | |
| <a href="https://huggingface.co/spaces/prs-eth/marigold-lcm" style="color: crimson;"> | |
| <h3 style="color: crimson;">Check out Marigold-LCM — a FAST version of this demo!<h3> | |
| </a> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath", | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| ensemble_size = gr.Slider( | |
| label="Ensemble size", | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=10, | |
| ) | |
| denoise_steps = gr.Slider( | |
| label="Number of denoising steps", | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=10, | |
| ) | |
| processing_res = gr.Radio( | |
| [ | |
| ("Native", 0), | |
| ("Recommended", 768), | |
| ], | |
| label="Processing resolution", | |
| value=768, | |
| ) | |
| input_output_16bit = gr.File( | |
| label="Predicted depth (16-bit)", | |
| visible=False, | |
| ) | |
| input_output_fp32 = gr.File( | |
| label="Predicted depth (32-bit)", | |
| visible=False, | |
| ) | |
| input_output_vis = gr.File( | |
| label="Predicted depth (red-near, blue-far)", | |
| visible=False, | |
| ) | |
| with gr.Row(): | |
| submit_btn = gr.Button(value="Compute Depth", variant="primary") | |
| clear_btn = gr.Button(value="Clear") | |
| with gr.Column(): | |
| output_slider = ImageSlider( | |
| label="Predicted depth (red-near, blue-far)", | |
| type="filepath", | |
| show_download_button=True, | |
| show_share_button=True, | |
| interactive=False, | |
| elem_classes="slider", | |
| position=0.25, | |
| ) | |
| files = gr.Files( | |
| label="Depth outputs", | |
| elem_id="download", | |
| interactive=False, | |
| ) | |
| demo_3d_header = gr.Markdown( | |
| """ | |
| <h3 align="center">3D Printing Depth Maps</h3> | |
| <p align="justify"> | |
| This part of the demo uses Marigold depth maps estimated in the previous step to create a | |
| 3D-printable model. The models are watertight, with correct normals, and exported in the STL format. | |
| We recommended creating the first model with the default parameters and iterating on it until the best | |
| result (see Pro Tips below). | |
| </p> | |
| """, | |
| render=False, | |
| ) | |
| demo_3d = gr.Row(render=False) | |
| with demo_3d: | |
| with gr.Column(): | |
| with gr.Accordion("3D printing demo: Main options", open=True): | |
| plane_near = gr.Slider( | |
| label="Relative position of the near plane (between 0 and 1)", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.001, | |
| value=0.0, | |
| ) | |
| plane_far = gr.Slider( | |
| label="Relative position of the far plane (between near and 1)", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.001, | |
| value=1.0, | |
| ) | |
| embossing = gr.Slider( | |
| label="Embossing level", | |
| minimum=0, | |
| maximum=100, | |
| step=1, | |
| value=20, | |
| ) | |
| with gr.Accordion("3D printing demo: Advanced options", open=False): | |
| size_longest_px = gr.Slider( | |
| label="Size (px) of the longest side", | |
| minimum=256, | |
| maximum=1024, | |
| step=256, | |
| value=512, | |
| ) | |
| size_longest_cm = gr.Slider( | |
| label="Size (cm) of the longest side", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=10, | |
| ) | |
| filter_size = gr.Slider( | |
| label="Size (px) of the smoothing filter", | |
| minimum=1, | |
| maximum=5, | |
| step=2, | |
| value=3, | |
| ) | |
| frame_thickness = gr.Slider( | |
| label="Frame thickness", | |
| minimum=0, | |
| maximum=100, | |
| step=1, | |
| value=5, | |
| ) | |
| frame_near = gr.Slider( | |
| label="Frame's near plane offset", | |
| minimum=-100, | |
| maximum=100, | |
| step=1, | |
| value=1, | |
| ) | |
| frame_far = gr.Slider( | |
| label="Frame's far plane offset", | |
| minimum=1, | |
| maximum=10, | |
| step=1, | |
| value=1, | |
| ) | |
| with gr.Row(): | |
| submit_3d = gr.Button(value="Create 3D", variant="primary") | |
| clear_3d = gr.Button(value="Clear 3D") | |
| gr.Markdown( | |
| """ | |
| <h5 align="center">Pro Tips</h5> | |
| <ol> | |
| <li><b>Re-render with new parameters</b>: Click "Clear 3D" and then "Create 3D".</li> | |
| <li><b>Adjust 3D scale and cut-off focus</b>: Set the frame's near plane offset to the | |
| minimum and use 3D preview to evaluate depth scaling. Repeat until the scale is correct and | |
| everything important is in the focus. Set the optimal value for frame's near | |
| plane offset as a last step.</li> | |
| <li><b>Increase details</b>: Decrease size of the smoothing filter (also increases noise).</li> | |
| </ol> | |
| """ | |
| ) | |
| with gr.Column(): | |
| viewer_3d = gr.Model3D( | |
| camera_position=(75.0, 90.0, 1.25), | |
| elem_classes="viewport", | |
| label="3D preview (low-res, relief highlight)", | |
| interactive=False, | |
| ) | |
| files_3d = gr.Files( | |
| label="3D model outputs (high-res)", | |
| elem_id="download", | |
| interactive=False, | |
| ) | |
| blocks_settings_depth = [ensemble_size, denoise_steps, processing_res] | |
| blocks_settings_3d = [ | |
| plane_near, | |
| plane_far, | |
| embossing, | |
| size_longest_px, | |
| size_longest_cm, | |
| filter_size, | |
| frame_thickness, | |
| frame_near, | |
| frame_far, | |
| ] | |
| blocks_settings = blocks_settings_depth + blocks_settings_3d | |
| map_id_to_default = {b._id: b.value for b in blocks_settings} | |
| inputs = [ | |
| input_image, | |
| ensemble_size, | |
| denoise_steps, | |
| processing_res, | |
| input_output_16bit, | |
| input_output_fp32, | |
| input_output_vis, | |
| plane_near, | |
| plane_far, | |
| embossing, | |
| filter_size, | |
| frame_near, | |
| ] | |
| outputs = [ | |
| submit_btn, | |
| input_image, | |
| output_slider, | |
| files, | |
| ] | |
| def submit_depth_fn(*args): | |
| out = list(process_pipe(*args)) | |
| out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out | |
| return out | |
| submit_btn.click( | |
| fn=submit_depth_fn, | |
| inputs=inputs, | |
| outputs=outputs, | |
| concurrency_limit=1, | |
| ) | |
| gr.Examples( | |
| fn=submit_depth_fn, | |
| examples=[ | |
| [ | |
| "files/bee.jpg", | |
| 10, # ensemble_size | |
| 10, # denoise_steps | |
| 768, # processing_res | |
| "files/bee_depth_16bit.png", | |
| "files/bee_depth_fp32.npy", | |
| "files/bee_depth_colored.png", | |
| 0.0, # plane_near | |
| 0.5, # plane_far | |
| 20, # embossing | |
| 3, # filter_size | |
| 0, # frame_near | |
| ], | |
| [ | |
| "files/cat.jpg", | |
| 10, # ensemble_size | |
| 10, # denoise_steps | |
| 768, # processing_res | |
| "files/cat_depth_16bit.png", | |
| "files/cat_depth_fp32.npy", | |
| "files/cat_depth_colored.png", | |
| 0.0, # plane_near | |
| 0.3, # plane_far | |
| 20, # embossing | |
| 3, # filter_size | |
| 0, # frame_near | |
| ], | |
| [ | |
| "files/swings.jpg", | |
| 10, # ensemble_size | |
| 10, # denoise_steps | |
| 768, # processing_res | |
| "files/swings_depth_16bit.png", | |
| "files/swings_depth_fp32.npy", | |
| "files/swings_depth_colored.png", | |
| 0.05, # plane_near | |
| 0.25, # plane_far | |
| 10, # embossing | |
| 1, # filter_size | |
| 0, # frame_near | |
| ], | |
| [ | |
| "files/einstein.jpg", | |
| 10, # ensemble_size | |
| 10, # denoise_steps | |
| 768, # processing_res | |
| "files/einstein_depth_16bit.png", | |
| "files/einstein_depth_fp32.npy", | |
| "files/einstein_depth_colored.png", | |
| 0.0, # plane_near | |
| 0.5, # plane_far | |
| 50, # embossing | |
| 3, # filter_size | |
| -15, # frame_near | |
| ], | |
| ], | |
| inputs=inputs, | |
| outputs=outputs, | |
| cache_examples=True, | |
| ) | |
| demo_3d_header.render() | |
| demo_3d.render() | |
| def clear_fn(): | |
| out = [] | |
| for b in blocks_settings: | |
| out.append(map_id_to_default[b._id]) | |
| out += [ | |
| gr.Button(interactive=True), | |
| gr.Button(interactive=True), | |
| gr.Image(value=None, interactive=True), | |
| None, | |
| None, | |
| None, | |
| None, | |
| None, | |
| None, | |
| None, | |
| ] | |
| return out | |
| clear_btn.click( | |
| fn=clear_fn, | |
| inputs=[], | |
| outputs=blocks_settings | |
| + [ | |
| submit_btn, | |
| submit_3d, | |
| input_image, | |
| input_output_16bit, | |
| input_output_fp32, | |
| input_output_vis, | |
| output_slider, | |
| files, | |
| viewer_3d, | |
| files_3d, | |
| ], | |
| ) | |
| def submit_3d_fn(*args): | |
| out = list(process_3d(*args)) | |
| out = [gr.Button(interactive=False)] + out | |
| return out | |
| submit_3d.click( | |
| fn=submit_3d_fn, | |
| inputs=[ | |
| input_image, | |
| files, | |
| size_longest_px, | |
| size_longest_cm, | |
| filter_size, | |
| plane_near, | |
| plane_far, | |
| embossing, | |
| frame_thickness, | |
| frame_near, | |
| frame_far, | |
| ], | |
| outputs=[submit_3d, viewer_3d, files_3d], | |
| concurrency_limit=1, | |
| ) | |
| def clear_3d_fn(): | |
| return [gr.Button(interactive=True), None, None] | |
| clear_3d.click( | |
| fn=clear_3d_fn, | |
| inputs=[], | |
| outputs=[submit_3d, viewer_3d, files_3d], | |
| ) | |
| demo.queue( | |
| api_open=False, | |
| ).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| ) | |
| def main(): | |
| CHECKPOINT = "prs-eth/marigold-v1-0" | |
| if "HF_TOKEN_LOGIN" in os.environ: | |
| login(token=os.environ["HF_TOKEN_LOGIN"]) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| pipe = MarigoldPipeline.from_pretrained(CHECKPOINT) | |
| try: | |
| import xformers | |
| pipe.enable_xformers_memory_efficient_attention() | |
| except: | |
| pass # run without xformers | |
| pipe = pipe.to(device) | |
| run_demo_server(pipe) | |
| if __name__ == "__main__": | |
| main() | |