Spaces:
Sleeping
Sleeping
Commit
ยท
ba79e72
1
Parent(s):
80ae5a7
put inference model
Browse files
app.py
CHANGED
|
@@ -1,15 +1,281 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
iface = gr.Interface(
|
| 11 |
-
fn=
|
| 12 |
inputs = gr.Textbox(lines=2, placeholder= '๋น์ ์ ๊ธ์ ๋ฃ์ด๋ณด์ธ์'),
|
| 13 |
-
outputs =
|
| 14 |
)
|
| 15 |
-
iface.launch(share =True)
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import re
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import glob
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch.optim import Adam
|
| 12 |
+
from tqdm.notebook import tqdm
|
| 13 |
+
from torch import nn
|
| 14 |
+
from transformers import BertModel
|
| 15 |
+
|
| 16 |
+
from transformers import AutoTokenizer
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
|
| 20 |
+
def split_essay_to_sentence(origin_essay):
|
| 21 |
+
origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], [])
|
| 22 |
+
essay_sent = [a for a in origin_essay_sentence if len(a) > 0]
|
| 23 |
+
return essay_sent
|
| 24 |
+
|
| 25 |
+
def get_first_extraction(text_sentence):
|
| 26 |
+
row_dict = {}
|
| 27 |
+
for row in tqdm(text_sentence):
|
| 28 |
+
question = 'what is the feeling?'
|
| 29 |
+
answer = question_answerer(question=question, context=row)
|
| 30 |
+
row_dict[row] = answer
|
| 31 |
+
return row_dict
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_sent_labeldata():
|
| 35 |
+
label =pd.read_csv('./rawdata/sentimental_label.csv', encoding = 'cp949', header = None)
|
| 36 |
+
label[1] = label[1].apply(lambda x : re.findall(r'[๊ฐ-ํฃ]+', x)[0])
|
| 37 |
+
label_dict =label[label.index % 10 == 0].set_index(0).to_dict()[1]
|
| 38 |
+
emo2idx = {v : k for k, v in enumerate(label_dict.items())}
|
| 39 |
+
idx2emo = {v : k[1] for k, v in emo2idx.items()}
|
| 40 |
+
return emo2idx, idx2emo
|
| 41 |
+
|
| 42 |
+
def load_model():
|
| 43 |
+
|
| 44 |
+
class BertClassifier(nn.Module):
|
| 45 |
+
|
| 46 |
+
def __init__(self, dropout = 0.3):
|
| 47 |
+
super(BertClassifier, self).__init__()
|
| 48 |
+
|
| 49 |
+
self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
|
| 50 |
+
self.dropout = nn.Dropout(dropout)
|
| 51 |
+
self.linear = nn.Linear(768, 6)
|
| 52 |
+
self.relu = nn.ReLU()
|
| 53 |
+
|
| 54 |
+
def forward(self, input_id, mask):
|
| 55 |
+
_, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
|
| 56 |
+
dropout_output = self.dropout(pooled_output)
|
| 57 |
+
linear_output = self.linear(dropout_output)
|
| 58 |
+
final_layer= self.relu(linear_output)
|
| 59 |
+
|
| 60 |
+
return final_layer
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 64 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 65 |
+
cls_model = BertClassifier()
|
| 66 |
+
criterion = nn.CrossEntropyLoss()
|
| 67 |
+
model_name = 'bert-base-multilingual-cased'
|
| 68 |
+
PATH = './model' + '/' + model_name + '_' + '2023102410'
|
| 69 |
+
print(PATH)
|
| 70 |
+
cls_model = torch.load(PATH)
|
| 71 |
+
#cls_model.load_state_dict(torch.load(PATH))
|
| 72 |
+
return tokenizer, cls_model
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class myDataset_for_infer(torch.utils.data.Dataset):
|
| 76 |
+
def __init__(self, X):
|
| 77 |
+
self.X = X
|
| 78 |
+
|
| 79 |
+
def __len__(self):
|
| 80 |
+
return len(self.X)
|
| 81 |
+
|
| 82 |
+
def __getitem__(self,idx):
|
| 83 |
+
sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 128, truncation = True)
|
| 84 |
+
return sentences
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def infer_data(model, main_feeling_keyword):
|
| 88 |
+
#ds = myDataset_for_infer()
|
| 89 |
+
df_infer = myDataset_for_infer(main_feeling_keyword)
|
| 90 |
+
|
| 91 |
+
infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16)
|
| 92 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 93 |
+
|
| 94 |
+
if device == 'cuda':
|
| 95 |
+
model = model.cuda()
|
| 96 |
+
|
| 97 |
+
result_list = []
|
| 98 |
+
with torch.no_grad():
|
| 99 |
+
for idx, infer_input in tqdm(enumerate(infer_dataloader)):
|
| 100 |
+
mask = infer_input['attention_mask'].to(device)
|
| 101 |
+
input_id = infer_input['input_ids'].squeeze(1).to(device)
|
| 102 |
+
|
| 103 |
+
output = model(input_id, mask)
|
| 104 |
+
result = np.argmax(F.softmax(output, dim=0).cpu(), axis=1).numpy()
|
| 105 |
+
result_list.extend(result)
|
| 106 |
+
return result_list
|
| 107 |
+
|
| 108 |
+
def get_word_emotion_pair(cls_model, origin_essay_sentence):
|
| 109 |
|
| 110 |
+
from konlpy.tag import Okt
|
| 111 |
|
| 112 |
+
okt = Okt()
|
| 113 |
+
#text = '๋๋ ์ ์๋ง๋ง ๋ฏธ์ํ์๊น'
|
| 114 |
+
def get_noun(text):
|
| 115 |
+
noun_list = [k for k, v in okt.pos(text) if (v == 'Noun' and len(k) > 1)]
|
| 116 |
+
return noun_list
|
| 117 |
+
def get_adj(text):
|
| 118 |
+
adj_list = [k for k, v in okt.pos(text) if (v == 'Adjective') and (len(k) > 1)]
|
| 119 |
+
return adj_list
|
| 120 |
+
def get_verb(text):
|
| 121 |
+
verb_list = [k for k, v in okt.pos(text) if (v == 'Verb') and (len(k) > 1)]
|
| 122 |
+
return verb_list
|
| 123 |
|
| 124 |
+
result_list = infer_data(cls_model, origin_essay_sentence)
|
| 125 |
+
final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list})
|
| 126 |
+
final_result['emotion'] = final_result['label'].map(idx2emo)
|
| 127 |
+
final_result['noun_list'] = final_result['text'].map(get_noun)
|
| 128 |
+
final_result['adj_list'] = final_result['text'].map(get_adj)
|
| 129 |
+
final_result['verb_list'] = final_result['text'].map(get_verb)
|
| 130 |
+
final_result['title'] = 'none'
|
| 131 |
+
file_made_dt = datetime.datetime.now()
|
| 132 |
+
file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d')
|
| 133 |
+
os.makedirs(f'./result/{file_made_dt_str}/', exist_ok = True)
|
| 134 |
+
final_result.to_csv(f"./result/{file_made_dt_str}/essay_result.csv", index = False)
|
| 135 |
|
| 136 |
+
return final_result, file_made_dt_str
|
| 137 |
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def get_essay_base_analysis(file_made_dt_str):
|
| 141 |
+
essay1 = pd.read_csv(f"./result/{file_name_dt}/essay_result.csv")
|
| 142 |
+
essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x))
|
| 143 |
+
essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x)))
|
| 144 |
+
essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x))
|
| 145 |
+
essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x)))
|
| 146 |
+
essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1)
|
| 147 |
+
essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x))
|
| 148 |
+
essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x)))
|
| 149 |
+
essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x))
|
| 150 |
+
essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x))
|
| 151 |
+
d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index()
|
| 152 |
+
d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x)))
|
| 153 |
+
d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x)))
|
| 154 |
+
|
| 155 |
+
# ๋ฌธ์ฅ ๊ธฐ์ค ์ต๊ณ ๊ฐ์
|
| 156 |
+
essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1)
|
| 157 |
+
|
| 158 |
+
emo_vocab_dict = {}
|
| 159 |
+
for k, v in essay1[['emotion','noun_list']].values:
|
| 160 |
+
for vocab in v:
|
| 161 |
+
if (k, 'noun', vocab) not in emo_vocab_dict:
|
| 162 |
+
emo_vocab_dict[(k, 'noun', vocab)] = 0
|
| 163 |
+
|
| 164 |
+
emo_vocab_dict[(k, 'noun', vocab)] += 1
|
| 165 |
+
|
| 166 |
+
for k, v in essay1[['emotion','adj_list']].values:
|
| 167 |
+
for vocab in v:
|
| 168 |
+
if (k, 'adj', vocab) not in emo_vocab_dict:
|
| 169 |
+
emo_vocab_dict[(k, 'adj', vocab)] = 0
|
| 170 |
+
|
| 171 |
+
emo_vocab_dict[(k, 'adj', vocab)] += 1
|
| 172 |
+
vocab_emo_cnt_dict = {}
|
| 173 |
+
for k, v in essay1[['emotion','noun_list']].values:
|
| 174 |
+
for vocab in v:
|
| 175 |
+
if (vocab, 'noun') not in vocab_emo_cnt_dict:
|
| 176 |
+
vocab_emo_cnt_dict[('noun', vocab)] = {}
|
| 177 |
+
if k not in vocab_emo_cnt_dict[( 'noun', vocab)]:
|
| 178 |
+
vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0
|
| 179 |
+
|
| 180 |
+
vocab_emo_cnt_dict[('noun', vocab)][k] += 1
|
| 181 |
+
|
| 182 |
+
for k, v in essay1[['emotion','adj_list']].values:
|
| 183 |
+
for vocab in v:
|
| 184 |
+
if ('adj', vocab) not in vocab_emo_cnt_dict:
|
| 185 |
+
vocab_emo_cnt_dict[( 'adj', vocab)] = {}
|
| 186 |
+
if k not in vocab_emo_cnt_dict[( 'adj', vocab)]:
|
| 187 |
+
vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0
|
| 188 |
+
|
| 189 |
+
vocab_emo_cnt_dict[('adj', vocab)][k] += 1
|
| 190 |
+
|
| 191 |
+
vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T
|
| 192 |
+
vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1)
|
| 193 |
+
# ๋จ์ด๋ณ ์ต๊ณ ๊ฐ์ ๋ฐ ๊ฐ์ ๊ฐ์
|
| 194 |
+
all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
|
| 195 |
+
|
| 196 |
+
# ๋จ์ด๋ณ ์ต๊ณ ๊ฐ์ ๋ฐ ๊ฐ์ ๊ฐ์ , ํ์ฉ์ฌ ํฌํจ ์
|
| 197 |
+
adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
|
| 198 |
+
|
| 199 |
+
# ๋ช
์ฌ๋ง ์ฌ์ฉ ์
|
| 200 |
+
noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False)
|
| 201 |
+
|
| 202 |
+
final_file_name = f"essay_all_vocab_result.csv"
|
| 203 |
+
adj_file_name = f"essay_adj_vocab_result.csv"
|
| 204 |
+
noun_file_name = f"essay_noun_vocab_result.csv"
|
| 205 |
+
|
| 206 |
+
os.makedirs(f'./result/{file_made_dt_str}/', exist_ok = True)
|
| 207 |
+
|
| 208 |
+
final_result.to_csv(f"./result/{file_made_dt_str}/essay_all_vocab_result.csv", index = False)
|
| 209 |
+
adj_result.to_csv(f"./result/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False)
|
| 210 |
+
noun_result.to_csv(f"./result/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False)
|
| 211 |
+
|
| 212 |
+
return final_result, adj_result, noun_result, essay_summary, file_made_dt_str
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
from transformers import pipeline
|
| 216 |
+
model_name = 'AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru'
|
| 217 |
+
question_answerer = pipeline("question-answering", model=model_name)
|
| 218 |
+
|
| 219 |
+
class BertClassifier(nn.Module):
|
| 220 |
+
|
| 221 |
+
def __init__(self, dropout = 0.3):
|
| 222 |
+
super(BertClassifier, self).__init__()
|
| 223 |
+
|
| 224 |
+
self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
|
| 225 |
+
self.dropout = nn.Dropout(dropout)
|
| 226 |
+
self.linear = nn.Linear(768, 6)
|
| 227 |
+
self.relu = nn.ReLU()
|
| 228 |
+
|
| 229 |
+
def forward(self, input_id, mask):
|
| 230 |
+
_, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
|
| 231 |
+
dropout_output = self.dropout(pooled_output)
|
| 232 |
+
linear_output = self.linear(dropout_output)
|
| 233 |
+
final_layer= self.relu(linear_output)
|
| 234 |
+
|
| 235 |
+
return final_layer
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def all_process(origin_essay):
|
| 239 |
+
essay_sent =split_essay_to_sentence(origin_essay)
|
| 240 |
+
row_dict = {}
|
| 241 |
+
for row in tqdm(essay_sent):
|
| 242 |
+
question = 'what is the feeling?'
|
| 243 |
+
answer = question_answerer(question=question, context=row)
|
| 244 |
+
row_dict[row] = answer
|
| 245 |
+
emo2idx, idx2emo = get_sent_labeldata()
|
| 246 |
+
tokenizer, cls_model = load_model()
|
| 247 |
+
final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent)
|
| 248 |
+
all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt)
|
| 249 |
+
|
| 250 |
+
summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30]
|
| 251 |
+
with open(f'./result/{file_name_dt}/summary.json','w') as f:
|
| 252 |
+
json.dump( essay_summary.to_json(),f)
|
| 253 |
+
with open(f'./result/{file_made_dt_str}/all_result.json','w') as f:
|
| 254 |
+
json.dump( all_result.to_json(),f)
|
| 255 |
+
with open(f'./result/{file_made_dt_str}/adj_result.json','w') as f:
|
| 256 |
+
json.dump( adj_result.to_json(),f)
|
| 257 |
+
with open(f'./result/{file_made_dt_str}/noun_result.json','w') as f:
|
| 258 |
+
json.dump( noun_result.to_json(),f)
|
| 259 |
+
return essay_summary
|
| 260 |
+
|
| 261 |
+
import gradio as gr
|
| 262 |
+
outputs = [gr.Dataframe(row_count = (6, "dynamic"),
|
| 263 |
+
col_count=(2, "dynamic"),
|
| 264 |
+
label="Essay Summary based on Words")
|
| 265 |
+
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
| 266 |
+
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
#row_count = (10, "dynamic"),
|
| 271 |
+
#col_count=(9, "dynamic"),
|
| 272 |
+
#label="Results",
|
| 273 |
+
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
| 274 |
+
#]
|
| 275 |
+
|
| 276 |
iface = gr.Interface(
|
| 277 |
+
fn=all_process,
|
| 278 |
inputs = gr.Textbox(lines=2, placeholder= '๋น์ ์ ๊ธ์ ๋ฃ์ด๋ณด์ธ์'),
|
| 279 |
+
outputs = outputs,
|
| 280 |
)
|
| 281 |
+
iface.launch(share =True)
|