Spaces:
Sleeping
Sleeping
Commit
ยท
c638b7d
1
Parent(s):
dc66c9b
Update app.py
Browse files
app.py
CHANGED
|
@@ -39,38 +39,6 @@ def get_sent_labeldata():
|
|
| 39 |
idx2emo = {v : k[1] for k, v in emo2idx.items()}
|
| 40 |
return emo2idx, idx2emo
|
| 41 |
|
| 42 |
-
# def load_model():
|
| 43 |
-
|
| 44 |
-
# class BertClassifier(nn.Module):
|
| 45 |
-
|
| 46 |
-
# def __init__(self, dropout = 0.3):
|
| 47 |
-
# super(BertClassifier, self).__init__()
|
| 48 |
-
|
| 49 |
-
# self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
|
| 50 |
-
# self.dropout = nn.Dropout(dropout)
|
| 51 |
-
# self.linear = nn.Linear(768, 6)
|
| 52 |
-
# self.relu = nn.ReLU()
|
| 53 |
-
|
| 54 |
-
# def forward(self, input_id, mask):
|
| 55 |
-
# _, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
|
| 56 |
-
# dropout_output = self.dropout(pooled_output)
|
| 57 |
-
# linear_output = self.linear(dropout_output)
|
| 58 |
-
# final_layer= self.relu(linear_output)
|
| 59 |
-
|
| 60 |
-
# return final_layer
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 64 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 65 |
-
# cls_model = BertClassifier()
|
| 66 |
-
# criterion = nn.CrossEntropyLoss()
|
| 67 |
-
# model_name = 'bert-base-multilingual-cased'
|
| 68 |
-
# PATH = './model' + '/' + model_name + '_' + '2023102410'
|
| 69 |
-
# print(PATH)
|
| 70 |
-
# cls_model = torch.load(PATH)
|
| 71 |
-
# #cls_model.load_state_dict(torch.load(PATH))
|
| 72 |
-
# return tokenizer, cls_model
|
| 73 |
-
|
| 74 |
|
| 75 |
class myDataset_for_infer(torch.utils.data.Dataset):
|
| 76 |
def __init__(self, X):
|
|
@@ -254,17 +222,13 @@ def all_process(origin_essay):
|
|
| 254 |
import gradio as gr
|
| 255 |
outputs = [gr.Dataframe(row_count = (6, "dynamic"),
|
| 256 |
col_count=(2, "dynamic"),
|
| 257 |
-
label="Essay Summary based on Words")
|
|
|
|
|
|
|
| 258 |
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
| 259 |
|
| 260 |
]
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
#row_count = (10, "dynamic"),
|
| 264 |
-
#col_count=(9, "dynamic"),
|
| 265 |
-
#label="Results",
|
| 266 |
-
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
| 267 |
-
#]
|
| 268 |
|
| 269 |
iface = gr.Interface(
|
| 270 |
fn=all_process,
|
|
|
|
| 39 |
idx2emo = {v : k[1] for k, v in emo2idx.items()}
|
| 40 |
return emo2idx, idx2emo
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
class myDataset_for_infer(torch.utils.data.Dataset):
|
| 44 |
def __init__(self, X):
|
|
|
|
| 222 |
import gradio as gr
|
| 223 |
outputs = [gr.Dataframe(row_count = (6, "dynamic"),
|
| 224 |
col_count=(2, "dynamic"),
|
| 225 |
+
label="Essay Summary based on Words"),
|
| 226 |
+
title = 'MooGeulMooGeul'
|
| 227 |
+
|
| 228 |
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
| 229 |
|
| 230 |
]
|
| 231 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
iface = gr.Interface(
|
| 234 |
fn=all_process,
|