Spaces:
Running
Running
encoder.py from https://github.com/openai/gpt-2/blob/master/src/encoder.py
Browse files- encoder.py +117 -0
encoder.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Byte pair encoding utilities"""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import regex as re
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
|
| 8 |
+
@lru_cache()
|
| 9 |
+
def bytes_to_unicode():
|
| 10 |
+
"""
|
| 11 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 12 |
+
The reversible bpe codes work on unicode strings.
|
| 13 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 14 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 15 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
| 16 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 17 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 18 |
+
"""
|
| 19 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("隆"), ord("卢")+1))+list(range(ord("庐"), ord("每")+1))
|
| 20 |
+
cs = bs[:]
|
| 21 |
+
n = 0
|
| 22 |
+
for b in range(2**8):
|
| 23 |
+
if b not in bs:
|
| 24 |
+
bs.append(b)
|
| 25 |
+
cs.append(2**8+n)
|
| 26 |
+
n += 1
|
| 27 |
+
cs = [chr(n) for n in cs]
|
| 28 |
+
return dict(zip(bs, cs))
|
| 29 |
+
|
| 30 |
+
def get_pairs(word):
|
| 31 |
+
"""Return set of symbol pairs in a word.
|
| 32 |
+
|
| 33 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 34 |
+
"""
|
| 35 |
+
pairs = set()
|
| 36 |
+
prev_char = word[0]
|
| 37 |
+
for char in word[1:]:
|
| 38 |
+
pairs.add((prev_char, char))
|
| 39 |
+
prev_char = char
|
| 40 |
+
return pairs
|
| 41 |
+
|
| 42 |
+
class Encoder:
|
| 43 |
+
def __init__(self, encoder, bpe_merges, errors='replace'):
|
| 44 |
+
self.encoder = encoder
|
| 45 |
+
self.decoder = {v:k for k,v in self.encoder.items()}
|
| 46 |
+
self.errors = errors # how to handle errors in decoding
|
| 47 |
+
self.byte_encoder = bytes_to_unicode()
|
| 48 |
+
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
|
| 49 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
| 50 |
+
self.cache = {}
|
| 51 |
+
|
| 52 |
+
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
| 53 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
| 54 |
+
|
| 55 |
+
def bpe(self, token):
|
| 56 |
+
if token in self.cache:
|
| 57 |
+
return self.cache[token]
|
| 58 |
+
word = tuple(token)
|
| 59 |
+
pairs = get_pairs(word)
|
| 60 |
+
|
| 61 |
+
if not pairs:
|
| 62 |
+
return token
|
| 63 |
+
|
| 64 |
+
while True:
|
| 65 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 66 |
+
if bigram not in self.bpe_ranks:
|
| 67 |
+
break
|
| 68 |
+
first, second = bigram
|
| 69 |
+
new_word = []
|
| 70 |
+
i = 0
|
| 71 |
+
while i < len(word):
|
| 72 |
+
try:
|
| 73 |
+
j = word.index(first, i)
|
| 74 |
+
new_word.extend(word[i:j])
|
| 75 |
+
i = j
|
| 76 |
+
except:
|
| 77 |
+
new_word.extend(word[i:])
|
| 78 |
+
break
|
| 79 |
+
|
| 80 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 81 |
+
new_word.append(first+second)
|
| 82 |
+
i += 2
|
| 83 |
+
else:
|
| 84 |
+
new_word.append(word[i])
|
| 85 |
+
i += 1
|
| 86 |
+
new_word = tuple(new_word)
|
| 87 |
+
word = new_word
|
| 88 |
+
if len(word) == 1:
|
| 89 |
+
break
|
| 90 |
+
else:
|
| 91 |
+
pairs = get_pairs(word)
|
| 92 |
+
word = ' '.join(word)
|
| 93 |
+
self.cache[token] = word
|
| 94 |
+
return word
|
| 95 |
+
|
| 96 |
+
def encode(self, text):
|
| 97 |
+
bpe_tokens = []
|
| 98 |
+
for token in re.findall(self.pat, text):
|
| 99 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 100 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 101 |
+
return bpe_tokens
|
| 102 |
+
|
| 103 |
+
def decode(self, tokens):
|
| 104 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 105 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
|
| 106 |
+
return text
|
| 107 |
+
|
| 108 |
+
def get_encoder(model_name, models_dir):
|
| 109 |
+
with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
|
| 110 |
+
encoder = json.load(f)
|
| 111 |
+
with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
|
| 112 |
+
bpe_data = f.read()
|
| 113 |
+
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
|
| 114 |
+
return Encoder(
|
| 115 |
+
encoder=encoder,
|
| 116 |
+
bpe_merges=bpe_merges,
|
| 117 |
+
)
|