Spaces:
Build error
Build error
| # cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng 2024 | |
| import copy | |
| import numbers | |
| from functools import partial | |
| from typing import Any, Callable, List, Optional, Tuple, Union | |
| import torch | |
| from torch import Tensor, nn | |
| from torch.nn import functional as F | |
| from .activation import MultiheadAttention | |
| from .scaling import ActivationBalancer, BalancedDoubleSwish | |
| from .scaling import BasicNorm as _BasicNorm | |
| _shape_t = Union[int, List[int], torch.Size] | |
| class LayerNorm(nn.Module): | |
| __constants__ = ["normalized_shape", "eps", "elementwise_affine"] | |
| normalized_shape: Tuple[int, ...] | |
| eps: float | |
| elementwise_affine: bool | |
| def __init__( | |
| self, | |
| normalized_shape: _shape_t, | |
| eps: float = 1e-5, | |
| elementwise_affine: bool = True, | |
| device=None, | |
| dtype=None, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(LayerNorm, self).__init__() | |
| if isinstance(normalized_shape, numbers.Integral): | |
| # mypy error: incompatible types in assignment | |
| normalized_shape = (normalized_shape,) # type: ignore[assignment] | |
| self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] | |
| self.eps = eps | |
| self.elementwise_affine = elementwise_affine | |
| if self.elementwise_affine: | |
| self.weight = nn.Parameter( | |
| torch.empty(self.normalized_shape, **factory_kwargs) | |
| ) | |
| self.bias = nn.Parameter( | |
| torch.empty(self.normalized_shape, **factory_kwargs) | |
| ) | |
| else: | |
| self.register_parameter("weight", None) | |
| self.register_parameter("bias", None) | |
| self.reset_parameters() | |
| def reset_parameters(self) -> None: | |
| if self.elementwise_affine: | |
| nn.init.ones_(self.weight) | |
| nn.init.zeros_(self.bias) | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| return ( | |
| F.layer_norm( | |
| input, | |
| self.normalized_shape, | |
| self.weight, | |
| self.bias, | |
| self.eps, | |
| ), | |
| embedding, | |
| ) | |
| assert embedding is None | |
| return F.layer_norm( | |
| input, self.normalized_shape, self.weight, self.bias, self.eps | |
| ) | |
| def extra_repr(self) -> str: | |
| return ( | |
| "{normalized_shape}, eps={eps}, " | |
| "elementwise_affine={elementwise_affine}".format(**self.__dict__) | |
| ) | |
| class AdaptiveLayerNorm(nn.Module): | |
| r"""Adaptive Layer Normalization""" | |
| def __init__(self, d_model, norm) -> None: | |
| super(AdaptiveLayerNorm, self).__init__() | |
| self.project_layer = nn.Linear(d_model, 2 * d_model) | |
| self.norm = norm | |
| self.d_model = d_model | |
| self.eps = self.norm.eps | |
| def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| weight, bias = torch.split( | |
| self.project_layer(embedding), | |
| split_size_or_sections=self.d_model, | |
| dim=-1, | |
| ) | |
| return (weight * self.norm(input) + bias, embedding) | |
| weight, bias = torch.split( | |
| self.project_layer(embedding), | |
| split_size_or_sections=self.d_model, | |
| dim=-1, | |
| ) | |
| return weight * self.norm(input) + bias | |
| class BasicNorm(_BasicNorm): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| eps: float = 1e-5, | |
| device=None, | |
| dtype=None, | |
| ): | |
| super(BasicNorm, self).__init__(d_model, eps=eps) | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| return ( | |
| super(BasicNorm, self).forward(input), | |
| embedding, | |
| ) | |
| assert embedding is None | |
| return super(BasicNorm, self).forward(input) | |
| class BalancedBasicNorm(nn.Module): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| eps: float = 1e-5, | |
| device=None, | |
| dtype=None, | |
| ): | |
| super(BalancedBasicNorm, self).__init__() | |
| self.balancer = ActivationBalancer( | |
| d_model, | |
| channel_dim=-1, | |
| min_positive=0.45, | |
| max_positive=0.55, | |
| max_abs=6.0, | |
| ) | |
| self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype) | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| return self.norm((self.balancer(input), embedding)) | |
| assert embedding is None | |
| return self.norm(self.balancer(input)) | |
| class IdentityNorm(nn.Module): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| eps: float = 1e-5, | |
| device=None, | |
| dtype=None, | |
| ) -> None: | |
| super(IdentityNorm, self).__init__() | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| return input | |
| assert embedding is None | |
| return input | |
| class TransformerEncoderLayer(nn.Module): | |
| __constants__ = ["batch_first", "norm_first"] | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| dim_feedforward: int = 2048, | |
| dropout: float = 0.1, | |
| activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
| batch_first: bool = False, | |
| norm_first: bool = False, | |
| device=None, | |
| dtype=None, | |
| linear1_self_attention_cls: nn.Module = nn.Linear, | |
| linear2_self_attention_cls: nn.Module = nn.Linear, | |
| linear1_feedforward_cls: nn.Module = nn.Linear, | |
| linear2_feedforward_cls: nn.Module = nn.Linear, | |
| layer_norm_cls: nn.Module = LayerNorm, | |
| layer_norm_eps: float = 1e-5, | |
| adaptive_layer_norm=False, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(TransformerEncoderLayer, self).__init__() | |
| self.self_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| # Implementation of Feedforward model | |
| self.linear1 = linear1_feedforward_cls( | |
| d_model, dim_feedforward, **factory_kwargs | |
| ) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = linear2_feedforward_cls( | |
| dim_feedforward, d_model, **factory_kwargs | |
| ) | |
| self.norm_first = norm_first | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| # Legacy string support for activation function. | |
| if isinstance(activation, str): | |
| activation = _get_activation_fn(activation) | |
| elif isinstance(activation, partial): | |
| activation = activation(d_model) | |
| elif activation == BalancedDoubleSwish: | |
| activation = BalancedDoubleSwish(d_model) | |
| # # We can't test self.activation in forward() in TorchScript, | |
| # # so stash some information about it instead. | |
| # if activation is F.relu or isinstance(activation, torch.nn.ReLU): | |
| # self.activation_relu_or_gelu = 1 | |
| # elif activation is F.gelu or isinstance(activation, torch.nn.GELU): | |
| # self.activation_relu_or_gelu = 2 | |
| # else: | |
| # self.activation_relu_or_gelu = 0 | |
| self.activation = activation | |
| norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
| if layer_norm_cls == IdentityNorm: | |
| norm2 = BalancedBasicNorm( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| else: | |
| norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| if adaptive_layer_norm: | |
| self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
| self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
| else: | |
| self.norm1 = norm1 | |
| self.norm2 = norm2 | |
| def __setstate__(self, state): | |
| super(TransformerEncoderLayer, self).__setstate__(state) | |
| if not hasattr(self, "activation"): | |
| self.activation = F.relu | |
| def forward( | |
| self, | |
| src: Tensor, | |
| src_mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| need_weights: Optional[bool] = False, | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the input through the encoder layer. | |
| Args: | |
| src: the sequence to the encoder layer (required). | |
| src_mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| x, stage_embedding = src, None | |
| is_src_tuple = False | |
| if isinstance(src, tuple): | |
| x, stage_embedding = src | |
| is_src_tuple = True | |
| if src_key_padding_mask is not None: | |
| _skpm_dtype = src_key_padding_mask.dtype | |
| if _skpm_dtype != torch.bool and not torch.is_floating_point( | |
| src_key_padding_mask | |
| ): | |
| raise AssertionError( | |
| "only bool and floating types of key_padding_mask are supported" | |
| ) | |
| if need_weights: | |
| if self.norm_first: | |
| out, attn = self._sa_block_attn( | |
| self.norm1(x, stage_embedding), | |
| src_mask, | |
| src_key_padding_mask, | |
| past | |
| ) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = x + out | |
| x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
| else: | |
| out, attn = self._sa_block_attn(x, src_mask, src_key_padding_mask, past) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = self.norm1( | |
| x + out, | |
| stage_embedding, | |
| ) | |
| x = self.norm2(x + self._ff_block(x), stage_embedding) | |
| assert not is_src_tuple | |
| # return (x, stage_embedding) | |
| return (x, attn) | |
| else: | |
| if self.norm_first: | |
| out = self._sa_block( | |
| self.norm1(x, stage_embedding), | |
| src_mask, | |
| src_key_padding_mask, past | |
| ) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = x + out | |
| x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
| else: | |
| out = self._sa_block(x, src_mask, src_key_padding_mask) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = self.norm1( | |
| x + out, | |
| stage_embedding, past | |
| ) | |
| x = self.norm2(x + self._ff_block(x), stage_embedding) | |
| if is_src_tuple: | |
| x = (x, stage_embedding) | |
| if present != None: | |
| x = [x, present] | |
| return x | |
| # self-attention block | |
| def _sa_block( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| x = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| past=past | |
| ) | |
| x, present = x | |
| return self.dropout1(x), present | |
| # self-attention block, also return attention weights | |
| def _sa_block_attn( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| x, attn = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=True, | |
| past=past | |
| ) | |
| x, present = x | |
| return (self.dropout1(x), present), attn | |
| # feed forward block | |
| def _ff_block(self, x: Tensor) -> Tensor: | |
| x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
| return self.dropout2(x) | |
| class TransformerEncoder(nn.Module): | |
| r"""TransformerEncoder is a stack of N encoder layers. Users can build the | |
| BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. | |
| Args: | |
| encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
| num_layers: the number of sub-encoder-layers in the encoder (required). | |
| norm: the layer normalization component (optional). | |
| enable_nested_tensor: if True, input will automatically convert to nested tensor | |
| (and convert back on output). This will improve the overall performance of | |
| TransformerEncoder when padding rate is high. Default: ``True`` (enabled). | |
| Examples:: | |
| >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) | |
| >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) | |
| >>> src = torch.rand(10, 32, 512) | |
| >>> out = transformer_encoder(src) | |
| """ | |
| __constants__ = ["norm"] | |
| def __init__(self, encoder_layer, num_layers, norm=None): | |
| super(TransformerEncoder, self).__init__() | |
| self.layers = _get_clones(encoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| def forward( | |
| self, | |
| src: Tensor, | |
| mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| return_layer_states: bool = False, | |
| need_weights:Optional[bool] = False, | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the input through the encoder layers in turn. | |
| Args: | |
| src: the sequence to the encoder (required). | |
| mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| return_layer_states: return layers' state (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| if return_layer_states: | |
| assert not need_weights | |
| layer_states = [] # layers' output | |
| output = src | |
| for mod in self.layers: | |
| output = mod( | |
| output, | |
| src_mask=mask, | |
| src_key_padding_mask=src_key_padding_mask, | |
| past=past | |
| ) | |
| layer_states.append(output[0]) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return layer_states, output | |
| if need_weights: | |
| assert not return_layer_states | |
| layer_attn = [] # layers' output | |
| output = src | |
| for mod in self.layers: | |
| output = mod( | |
| output, | |
| src_mask=mask, | |
| src_key_padding_mask=src_key_padding_mask, | |
| need_weights=True, | |
| past=past | |
| ) | |
| layer_attn.append(output[1]) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return layer_attn, output | |
| output = src | |
| all_present = [] | |
| for n_layer, mod in enumerate(self.layers): | |
| output = mod( | |
| output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, past=None if past is None else past[n_layer] | |
| ) | |
| if isinstance(output, list): | |
| output, present = output | |
| all_present.append(present) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| if all_present != []: | |
| all_present = torch.stack(all_present, dim=0) # (num_layers, 2, batch_size, num_heads, seq_len, head_dim) | |
| output = [output, all_present] | |
| return output | |
| class TransformerDecoderLayer(nn.Module): | |
| __constants__ = ["batch_first", "norm_first"] | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| dim_feedforward: int = 2048, | |
| dropout: float = 0.1, | |
| activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
| linear1_self_attention_cls: nn.Module = nn.Linear, | |
| linear2_self_attention_cls: nn.Module = nn.Linear, | |
| linear1_feedforward_cls: nn.Module = nn.Linear, | |
| linear2_feedforward_cls: nn.Module = nn.Linear, | |
| batch_first: bool = False, | |
| norm_first: bool = False, | |
| device=None, | |
| dtype=None, | |
| layer_norm_cls: nn.Module = LayerNorm, | |
| layer_norm_eps: float = 1e-5, | |
| adaptive_layer_norm=False, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(TransformerDecoderLayer, self).__init__() | |
| self.self_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| self.multihead_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| # Implementation of Feedforward model | |
| self.linear1 = linear1_feedforward_cls( | |
| d_model, dim_feedforward, **factory_kwargs | |
| ) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = linear2_feedforward_cls( | |
| dim_feedforward, d_model, **factory_kwargs | |
| ) | |
| self.norm_first = norm_first | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| # Legacy string support for activation function. | |
| if isinstance(activation, str): | |
| self.activation = _get_activation_fn(activation) | |
| elif isinstance(activation, partial): | |
| self.activation = activation(d_model) | |
| elif activation == BalancedDoubleSwish: | |
| self.activation = BalancedDoubleSwish(d_model) | |
| else: | |
| self.activation = activation | |
| if adaptive_layer_norm: | |
| norm1 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| norm3 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
| self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
| self.norm3 = AdaptiveLayerNorm(d_model, norm3) | |
| else: | |
| self.norm1 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| self.norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| if layer_norm_cls == IdentityNorm: | |
| self.norm3 = BalancedBasicNorm( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| else: | |
| self.norm3 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| def forward( | |
| self, | |
| tgt: Tensor, | |
| memory: Tensor, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the inputs (and mask) through the decoder layer. | |
| Args: | |
| tgt: the sequence to the decoder layer (required). | |
| memory: the sequence from the last layer of the encoder (required). | |
| tgt_mask: the mask for the tgt sequence (optional). | |
| memory_mask: the mask for the memory sequence (optional). | |
| tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
| memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| tgt_is_tuple = False | |
| if isinstance(tgt, tuple): | |
| x, stage_embedding = tgt | |
| tgt_is_tuple = True | |
| else: | |
| x, stage_embedding = tgt, None | |
| if self.norm_first: | |
| x = x + self._sa_block( | |
| self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask | |
| ) | |
| x = x + self._mha_block( | |
| self.norm2(x, stage_embedding), | |
| memory, | |
| memory_mask, | |
| memory_key_padding_mask, | |
| ) | |
| x = x + self._ff_block(self.norm3(x, stage_embedding)) | |
| else: | |
| x = self.norm1( | |
| x + self._sa_block(x, tgt_mask, tgt_key_padding_mask), | |
| stage_embedding, | |
| ) | |
| x = self.norm2( | |
| x | |
| + self._mha_block( | |
| x, memory, memory_mask, memory_key_padding_mask | |
| ), | |
| stage_embedding, | |
| ) | |
| x = self.norm3(x + self._ff_block(x), stage_embedding) | |
| if tgt_is_tuple: | |
| return (x, stage_embedding) | |
| return x | |
| # self-attention block | |
| def _sa_block( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| ) -> Tensor: | |
| x = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| )[0] | |
| return self.dropout1(x) | |
| # multihead attention block | |
| def _mha_block( | |
| self, | |
| x: Tensor, | |
| mem: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| ) -> Tensor: | |
| x = self.multihead_attn( | |
| x, | |
| mem, | |
| mem, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| )[0] | |
| return self.dropout2(x) | |
| # feed forward block | |
| def _ff_block(self, x: Tensor) -> Tensor: | |
| x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
| return self.dropout3(x) | |
| def _get_clones(module, N): | |
| return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: | |
| if activation == "relu": | |
| return F.relu | |
| elif activation == "gelu": | |
| return F.gelu | |
| raise RuntimeError( | |
| "activation should be relu/gelu, not {}".format(activation) | |
| ) |