Spaces:
Running
Running
Ahsen Khaliq
commited on
Commit
·
54ecb93
1
Parent(s):
0364e30
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
|
| 8 |
+
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')
|
| 9 |
+
|
| 10 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
|
| 11 |
+
|
| 12 |
+
use_large_model = True
|
| 13 |
+
|
| 14 |
+
if use_large_model:
|
| 15 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
|
| 16 |
+
else:
|
| 17 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
| 18 |
+
|
| 19 |
+
device = "cpu"
|
| 20 |
+
midas.to(device)
|
| 21 |
+
|
| 22 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
| 23 |
+
|
| 24 |
+
if use_large_model:
|
| 25 |
+
transform = midas_transforms.default_transform
|
| 26 |
+
else:
|
| 27 |
+
transform = midas_transforms.small_transform
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def depth(img):
|
| 31 |
+
cv_image = np.array(img)
|
| 32 |
+
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
|
| 33 |
+
|
| 34 |
+
input_batch = transform(img).to(device)
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
prediction = midas(input_batch)
|
| 37 |
+
|
| 38 |
+
prediction = torch.nn.functional.interpolate(
|
| 39 |
+
prediction.unsqueeze(1),
|
| 40 |
+
size=img.shape[:2],
|
| 41 |
+
mode="bicubic",
|
| 42 |
+
align_corners=False,
|
| 43 |
+
).squeeze()
|
| 44 |
+
|
| 45 |
+
output = prediction.cpu().numpy()
|
| 46 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
| 47 |
+
img = Image.fromarray(formatted)
|
| 48 |
+
return img
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
inputs = gr.inputs.Image(type='pil', label="Original Image")
|
| 52 |
+
outputs = gr.outputs.Image(type="pil",label="Output Image")
|
| 53 |
+
|
| 54 |
+
title = "MiDaS"
|
| 55 |
+
description = "Gradio demo for MiDaS v2.1 which takes in a single image for computing relative depth. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
| 56 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>"
|
| 57 |
+
|
| 58 |
+
examples = [
|
| 59 |
+
["turtle.jpg"],
|
| 60 |
+
["lions.jpg"]
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
gr.Interface(depth, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(debug=True)
|