Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchaudio
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
device="cpu"
|
| 6 |
+
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
|
| 7 |
+
processor = bundle.get_text_processor()
|
| 8 |
+
tacotron2 = bundle.get_tacotron2().to(device)
|
| 9 |
+
|
| 10 |
+
# Workaround to load model mapped on GPU
|
| 11 |
+
# https://stackoverflow.com/a/61840832
|
| 12 |
+
waveglow = torch.hub.load(
|
| 13 |
+
"NVIDIA/DeepLearningExamples:torchhub",
|
| 14 |
+
"nvidia_waveglow",
|
| 15 |
+
model_math="fp32",
|
| 16 |
+
pretrained=False,
|
| 17 |
+
)
|
| 18 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
| 19 |
+
"https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth", # noqa: E501
|
| 20 |
+
progress=False,
|
| 21 |
+
map_location=device,
|
| 22 |
+
)
|
| 23 |
+
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
|
| 24 |
+
|
| 25 |
+
waveglow.load_state_dict(state_dict)
|
| 26 |
+
waveglow = waveglow.remove_weightnorm(waveglow)
|
| 27 |
+
waveglow = waveglow.to(device)
|
| 28 |
+
waveglow.eval()
|
| 29 |
+
|
| 30 |
+
def inference(text):
|
| 31 |
+
|
| 32 |
+
with torch.inference_mode():
|
| 33 |
+
processed, lengths = processor(text)
|
| 34 |
+
processed = processed.to(device)
|
| 35 |
+
lengths = lengths.to(device)
|
| 36 |
+
spec, _, _ = tacotron2.infer(processed, lengths)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
waveforms = waveglow.infer(spec)
|
| 42 |
+
|
| 43 |
+
torchaudio.save("_assets/output_waveglow.wav", waveforms[0:1].cpu(), sample_rate=22050)
|
| 44 |
+
return "output_waveglow.wav"
|
| 45 |
+
|
| 46 |
+
gr.Interface(inference,"text",gr.outputs.Audio(type="file")).launch(debug=True)
|