[update]add model
Browse files- examples/chinese_chitchat/step_1_prepare_data.py +79 -0
- examples/chinese_chitchat/step_2_train_model.py +260 -0
- examples/{exercises/chinese_porn_novel → chinese_porn_novel}/1.prepare_data.py +0 -0
- examples/{exercises/chinese_porn_novel → chinese_porn_novel}/2.train_model.py +0 -0
- examples/{exercises/chinese_porn_novel → chinese_porn_novel}/3.test_model.py +0 -0
- examples/{exercises/chinese_porn_novel → chinese_porn_novel}/README.md +0 -0
- examples/{exercises/chinese_porn_novel → chinese_porn_novel}/run.sh +0 -0
- examples/{exercises/chinese_porn_novel → chinese_porn_novel}/stop.sh +0 -0
- examples/lib_service_4chan/step_1_prepare_data.py +63 -0
- examples/lib_service_4chan/step_2_train_model.py +263 -0
examples/chinese_chitchat/step_1_prepare_data.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
from itertools import chain
|
| 5 |
+
import os
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import platform
|
| 8 |
+
|
| 9 |
+
if platform.system() == "Windows":
|
| 10 |
+
from project_settings import project_path
|
| 11 |
+
else:
|
| 12 |
+
project_path = os.path.abspath("./")
|
| 13 |
+
project_path = Path(project_path)
|
| 14 |
+
|
| 15 |
+
from datasets import load_dataset, concatenate_datasets, IterableDataset, Dataset
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_args():
|
| 19 |
+
parser = argparse.ArgumentParser()
|
| 20 |
+
parser.add_argument("--dataset_path", default="qgyd2021/chinese_chitchat", type=str)
|
| 21 |
+
parser.add_argument("--dataset_split", default=None, type=str)
|
| 22 |
+
parser.add_argument(
|
| 23 |
+
"--dataset_cache_dir",
|
| 24 |
+
default=(project_path / "hub_datasets").as_posix(),
|
| 25 |
+
type=str
|
| 26 |
+
)
|
| 27 |
+
parser.add_argument("--dataset_streaming", default=False, type=bool)
|
| 28 |
+
parser.add_argument("--valid_dataset_size", default=10000, type=int)
|
| 29 |
+
|
| 30 |
+
parser.add_argument(
|
| 31 |
+
"--num_workers",
|
| 32 |
+
default=None if platform.system() == "Windows" else os.cpu_count() // 2,
|
| 33 |
+
type=str
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
parser.add_argument("--seed", default=3407, type=str, help="https://arxiv.org/abs/2109.08203")
|
| 37 |
+
|
| 38 |
+
args = parser.parse_args()
|
| 39 |
+
return args
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def main():
|
| 43 |
+
args = get_args()
|
| 44 |
+
|
| 45 |
+
names = [
|
| 46 |
+
"qingyun", "chatterbot", "douban", "ptt", "subtitle", "tieba", "weibo", "xiaohuangji"
|
| 47 |
+
]
|
| 48 |
+
dataset_list = list()
|
| 49 |
+
for name in names:
|
| 50 |
+
dataset_dict = load_dataset(
|
| 51 |
+
path=args.dataset_path,
|
| 52 |
+
name=name,
|
| 53 |
+
split=args.dataset_split,
|
| 54 |
+
cache_dir=args.dataset_cache_dir,
|
| 55 |
+
num_proc=args.num_workers if not args.dataset_streaming else None,
|
| 56 |
+
streaming=args.dataset_streaming,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
dataset = dataset_dict["train"]
|
| 60 |
+
dataset_list.append(dataset)
|
| 61 |
+
|
| 62 |
+
dataset = concatenate_datasets(dataset_list)
|
| 63 |
+
|
| 64 |
+
if args.dataset_streaming:
|
| 65 |
+
valid_dataset = dataset.take(args.valid_dataset_size)
|
| 66 |
+
train_dataset = dataset.skip(args.valid_dataset_size)
|
| 67 |
+
train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer_size, seed=None)
|
| 68 |
+
else:
|
| 69 |
+
dataset = dataset.train_test_split(test_size=args.valid_dataset_size, seed=None)
|
| 70 |
+
train_dataset = dataset["train"]
|
| 71 |
+
valid_dataset = dataset["test"]
|
| 72 |
+
|
| 73 |
+
print(train_dataset)
|
| 74 |
+
print(valid_dataset)
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
if __name__ == '__main__':
|
| 79 |
+
main()
|
examples/chinese_chitchat/step_2_train_model.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import platform
|
| 7 |
+
import re
|
| 8 |
+
from typing import Dict, List, Optional, Union
|
| 9 |
+
|
| 10 |
+
if platform.system() == "Windows":
|
| 11 |
+
from project_settings import project_path
|
| 12 |
+
else:
|
| 13 |
+
project_path = os.path.abspath("./")
|
| 14 |
+
project_path = Path(project_path)
|
| 15 |
+
|
| 16 |
+
hf_hub_cache = (project_path / "cache/huggingface/hub").as_posix()
|
| 17 |
+
|
| 18 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = hf_hub_cache
|
| 19 |
+
|
| 20 |
+
from datasets import concatenate_datasets, load_dataset
|
| 21 |
+
import huggingface_hub
|
| 22 |
+
import torch
|
| 23 |
+
import torch.multiprocessing as mp
|
| 24 |
+
from transformers import HfArgumentParser
|
| 25 |
+
from transformers.data.data_collator import DataCollatorForLanguageModeling
|
| 26 |
+
from transformers.models.auto import AutoModelForCausalLM, AutoTokenizer
|
| 27 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
| 28 |
+
from transformers.trainer import Trainer
|
| 29 |
+
from transformers.trainer_callback import EarlyStoppingCallback
|
| 30 |
+
from transformers.training_args import TrainingArguments
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@dataclass
|
| 34 |
+
class ScriptArguments:
|
| 35 |
+
# dataset
|
| 36 |
+
dataset_path: str = field(default="qgyd2021/chinese_chitchat")
|
| 37 |
+
dataset_name: str = field(default=None)
|
| 38 |
+
dataset_split: str = field(default=None)
|
| 39 |
+
dataset_cache_dir: str = field(default=(project_path / "hub_datasets").as_posix())
|
| 40 |
+
dataset_streaming: bool = field(default=False)
|
| 41 |
+
num_workers: int = field(default=None if platform.system() == "Windows" else os.cpu_count() // 2)
|
| 42 |
+
|
| 43 |
+
valid_dataset_size: int = field(default=10000)
|
| 44 |
+
seed: int = field(default=3407)
|
| 45 |
+
|
| 46 |
+
# model
|
| 47 |
+
# pretrained_model_name_or_path: str = field(
|
| 48 |
+
# default="uer/gpt2-chinese-cluecorpussmall" if platform.system() != "Windows" else (project_path / "pretrained_models/gpt2-chinese-cluecorpussmall").as_posix()
|
| 49 |
+
# )
|
| 50 |
+
pretrained_model_name_or_path: str = field(
|
| 51 |
+
default="qgyd2021/chinese_chitchat"
|
| 52 |
+
)
|
| 53 |
+
hf_token: str = field(default="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")
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_args():
|
| 57 |
+
parser = HfArgumentParser(ScriptArguments)
|
| 58 |
+
args = parser.parse_args_into_dataclasses(return_remaining_strings=True)[0]
|
| 59 |
+
return args
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def train_model(local_rank, world_size, args):
|
| 63 |
+
os.environ["RANK"] = f"{local_rank}"
|
| 64 |
+
os.environ["LOCAL_RANK"] = f"{local_rank}"
|
| 65 |
+
os.environ["WORLD_SIZE"] = f"{world_size}"
|
| 66 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
| 67 |
+
os.environ["MASTER_PORT"] = "12355"
|
| 68 |
+
|
| 69 |
+
huggingface_hub.login(token=args.hf_token)
|
| 70 |
+
|
| 71 |
+
# dataset
|
| 72 |
+
names = [
|
| 73 |
+
# "qingyun", "chatterbot",
|
| 74 |
+
# "douban", "ptt", "subtitle", "tieba", "weibo",
|
| 75 |
+
"xiaohuangji"
|
| 76 |
+
]
|
| 77 |
+
dataset_list = list()
|
| 78 |
+
for name in names:
|
| 79 |
+
dataset_dict = load_dataset(
|
| 80 |
+
path=args.dataset_path,
|
| 81 |
+
name=name,
|
| 82 |
+
split=args.dataset_split,
|
| 83 |
+
cache_dir=args.dataset_cache_dir,
|
| 84 |
+
# num_proc=args.num_workers if not args.dataset_streaming else None,
|
| 85 |
+
streaming=args.dataset_streaming,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
dataset = dataset_dict["train"]
|
| 89 |
+
dataset_list.append(dataset)
|
| 90 |
+
|
| 91 |
+
dataset = concatenate_datasets(dataset_list)
|
| 92 |
+
|
| 93 |
+
if args.dataset_streaming:
|
| 94 |
+
valid_dataset = dataset.take(args.valid_dataset_size)
|
| 95 |
+
train_dataset = dataset.skip(args.valid_dataset_size)
|
| 96 |
+
train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer_size, seed=args.seed)
|
| 97 |
+
else:
|
| 98 |
+
dataset = dataset.train_test_split(test_size=args.valid_dataset_size, seed=args.seed)
|
| 99 |
+
train_dataset = dataset["train"]
|
| 100 |
+
valid_dataset = dataset["test"]
|
| 101 |
+
|
| 102 |
+
# pretrained model
|
| 103 |
+
model: GPT2LMHeadModel = AutoModelForCausalLM.from_pretrained(args.pretrained_model_name_or_path)
|
| 104 |
+
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path)
|
| 105 |
+
|
| 106 |
+
# map
|
| 107 |
+
def encode(examples: dict):
|
| 108 |
+
conversation_ = examples.pop("conversation")
|
| 109 |
+
|
| 110 |
+
utterances = list()
|
| 111 |
+
for row_ in conversation_:
|
| 112 |
+
message_ = row_["message"]
|
| 113 |
+
utterance = tokenizer.sep_token.join(message_)
|
| 114 |
+
utterances.append(utterance)
|
| 115 |
+
|
| 116 |
+
utterances = tokenizer.__call__(
|
| 117 |
+
text=utterances,
|
| 118 |
+
truncation=True,
|
| 119 |
+
padding="longest",
|
| 120 |
+
max_length=1024,
|
| 121 |
+
return_special_tokens_mask=True,
|
| 122 |
+
)
|
| 123 |
+
return utterances
|
| 124 |
+
|
| 125 |
+
train_dataset = train_dataset.map(
|
| 126 |
+
encode,
|
| 127 |
+
batched=True,
|
| 128 |
+
drop_last_batch=True,
|
| 129 |
+
batch_size=10,
|
| 130 |
+
num_proc=args.num_workers if not args.dataset_streaming else None,
|
| 131 |
+
cache_file_name="train.cache"
|
| 132 |
+
)
|
| 133 |
+
valid_dataset = valid_dataset.map(
|
| 134 |
+
encode,
|
| 135 |
+
batched=True,
|
| 136 |
+
drop_last_batch=True,
|
| 137 |
+
batch_size=10,
|
| 138 |
+
num_proc=args.num_workers if not args.dataset_streaming else None,
|
| 139 |
+
cache_file_name="valid.cache"
|
| 140 |
+
)
|
| 141 |
+
dataset_info = f"""
|
| 142 |
+
train dataset: {len(train_dataset)}
|
| 143 |
+
valid dataset: {len(valid_dataset)}
|
| 144 |
+
"""
|
| 145 |
+
dataset_info = re.sub(r"[\u0020]{4,}", "", dataset_info)
|
| 146 |
+
print(dataset_info)
|
| 147 |
+
|
| 148 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 149 |
+
tokenizer=tokenizer, mlm=False
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# training_args
|
| 153 |
+
training_args = TrainingArguments(
|
| 154 |
+
output_dir="output_dir",
|
| 155 |
+
evaluation_strategy="steps",
|
| 156 |
+
per_device_train_batch_size=16,
|
| 157 |
+
gradient_accumulation_steps=4,
|
| 158 |
+
learning_rate=2e-4,
|
| 159 |
+
weight_decay=0,
|
| 160 |
+
max_grad_norm=1.0,
|
| 161 |
+
num_train_epochs=40.0,
|
| 162 |
+
warmup_steps=10000,
|
| 163 |
+
logging_steps=1000,
|
| 164 |
+
save_strategy="steps",
|
| 165 |
+
save_steps=1000,
|
| 166 |
+
save_total_limit=2,
|
| 167 |
+
no_cuda=False,
|
| 168 |
+
fp16=True if torch.cuda.is_available() else False,
|
| 169 |
+
local_rank=local_rank,
|
| 170 |
+
ddp_backend="nccl",
|
| 171 |
+
remove_unused_columns=True,
|
| 172 |
+
load_best_model_at_end=True,
|
| 173 |
+
metric_for_best_model="loss",
|
| 174 |
+
greater_is_better=False,
|
| 175 |
+
report_to="tensorboard",
|
| 176 |
+
push_to_hub=True,
|
| 177 |
+
hub_model_id="chinese_chitchat",
|
| 178 |
+
hub_strategy="every_save",
|
| 179 |
+
gradient_checkpointing=True,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
partial_state_str = f"""
|
| 183 |
+
distributed_type: {training_args.distributed_state.distributed_type}
|
| 184 |
+
local_process_index: {training_args.distributed_state.local_process_index}
|
| 185 |
+
num_processes: {training_args.distributed_state.num_processes}
|
| 186 |
+
process_index: {training_args.distributed_state.process_index}
|
| 187 |
+
device: {training_args.distributed_state.device}
|
| 188 |
+
"""
|
| 189 |
+
partial_state_str = re.sub(r"[\u0020]{4,}", "", partial_state_str)
|
| 190 |
+
print(partial_state_str)
|
| 191 |
+
|
| 192 |
+
environ = f"""
|
| 193 |
+
RANK: {os.environ.get("RANK", -1)}
|
| 194 |
+
WORLD_SIZE: {os.environ.get("WORLD_SIZE", -1)}
|
| 195 |
+
LOCAL_RANK: {os.environ.get("LOCAL_RANK", -1)}
|
| 196 |
+
"""
|
| 197 |
+
environ = re.sub(r"[\u0020]{4,}", "", environ)
|
| 198 |
+
print(environ)
|
| 199 |
+
|
| 200 |
+
callbacks = [
|
| 201 |
+
EarlyStoppingCallback(early_stopping_patience=5)
|
| 202 |
+
]
|
| 203 |
+
|
| 204 |
+
trainer = Trainer(
|
| 205 |
+
model=model,
|
| 206 |
+
args=training_args,
|
| 207 |
+
data_collator=data_collator,
|
| 208 |
+
train_dataset=train_dataset,
|
| 209 |
+
eval_dataset=valid_dataset,
|
| 210 |
+
tokenizer=tokenizer,
|
| 211 |
+
callbacks=callbacks
|
| 212 |
+
)
|
| 213 |
+
train_result = trainer.train()
|
| 214 |
+
|
| 215 |
+
# 保存最好的 checkpoint
|
| 216 |
+
final_save_path = os.path.join(training_args.output_dir, "final")
|
| 217 |
+
trainer.save_model(final_save_path) # Saves the tokenizer too
|
| 218 |
+
# 保存训练指标
|
| 219 |
+
metrics = train_result.metrics
|
| 220 |
+
trainer.log_metrics("train", metrics)
|
| 221 |
+
trainer.save_metrics("train", metrics)
|
| 222 |
+
trainer.save_state()
|
| 223 |
+
|
| 224 |
+
tokenizer.save_pretrained(final_save_path)
|
| 225 |
+
return
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def train_on_cpu():
|
| 229 |
+
args = get_args()
|
| 230 |
+
|
| 231 |
+
train_model(0, 1, args)
|
| 232 |
+
return
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def train_on_kaggle_notebook():
|
| 236 |
+
"""
|
| 237 |
+
train on kaggle notebook with GPU T4 x2
|
| 238 |
+
|
| 239 |
+
from shutil import copyfile
|
| 240 |
+
copyfile(src = "../input/tempdataset/step_2_train_model.py", dst = "../working/step_2_train_model.py")
|
| 241 |
+
|
| 242 |
+
import step_2_train_model
|
| 243 |
+
step_2_train_model.train_on_kaggle_notebook()
|
| 244 |
+
|
| 245 |
+
"""
|
| 246 |
+
args = get_args()
|
| 247 |
+
|
| 248 |
+
world_size = torch.cuda.device_count()
|
| 249 |
+
print("world_size: {}".format(world_size))
|
| 250 |
+
|
| 251 |
+
mp.spawn(train_model,
|
| 252 |
+
args=(world_size, args),
|
| 253 |
+
nprocs=world_size,
|
| 254 |
+
join=True)
|
| 255 |
+
|
| 256 |
+
return
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
if __name__ == '__main__':
|
| 260 |
+
train_on_cpu()
|
examples/{exercises/chinese_porn_novel → chinese_porn_novel}/1.prepare_data.py
RENAMED
|
File without changes
|
examples/{exercises/chinese_porn_novel → chinese_porn_novel}/2.train_model.py
RENAMED
|
File without changes
|
examples/{exercises/chinese_porn_novel → chinese_porn_novel}/3.test_model.py
RENAMED
|
File without changes
|
examples/{exercises/chinese_porn_novel → chinese_porn_novel}/README.md
RENAMED
|
File without changes
|
examples/{exercises/chinese_porn_novel → chinese_porn_novel}/run.sh
RENAMED
|
File without changes
|
examples/{exercises/chinese_porn_novel → chinese_porn_novel}/stop.sh
RENAMED
|
File without changes
|
examples/lib_service_4chan/step_1_prepare_data.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
import platform
|
| 6 |
+
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
|
| 9 |
+
from project_settings import project_path
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_args():
|
| 13 |
+
parser = argparse.ArgumentParser()
|
| 14 |
+
parser.add_argument("--dataset_path", default="qgyd2021/lip_service_4chan", type=str)
|
| 15 |
+
parser.add_argument("--dataset_name", default="moss_003_sft_data_10", type=str)
|
| 16 |
+
parser.add_argument("--dataset_split", default=None, type=str)
|
| 17 |
+
parser.add_argument(
|
| 18 |
+
"--dataset_cache_dir",
|
| 19 |
+
default=(project_path / "hub_datasets").as_posix(),
|
| 20 |
+
type=str
|
| 21 |
+
)
|
| 22 |
+
parser.add_argument("--dataset_streaming", default=False, type=bool)
|
| 23 |
+
parser.add_argument(
|
| 24 |
+
"--num_workers",
|
| 25 |
+
default=None if platform.system() == "Windows" else os.cpu_count() // 2,
|
| 26 |
+
type=str
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
args = parser.parse_args()
|
| 30 |
+
return args
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def main():
|
| 34 |
+
args = get_args()
|
| 35 |
+
|
| 36 |
+
dataset_dict = load_dataset(
|
| 37 |
+
path=args.dataset_path,
|
| 38 |
+
name=args.dataset_name,
|
| 39 |
+
split=args.dataset_split,
|
| 40 |
+
cache_dir=args.dataset_cache_dir,
|
| 41 |
+
num_proc=args.num_workers if not args.dataset_streaming else None,
|
| 42 |
+
streaming=args.dataset_streaming,
|
| 43 |
+
)
|
| 44 |
+
print(dataset_dict)
|
| 45 |
+
|
| 46 |
+
dataset = dataset_dict["train"]
|
| 47 |
+
|
| 48 |
+
if args.dataset_streaming:
|
| 49 |
+
valid_dataset = dataset.take(args.valid_dataset_size)
|
| 50 |
+
train_dataset = dataset.skip(args.valid_dataset_size)
|
| 51 |
+
train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer_size, seed=None)
|
| 52 |
+
else:
|
| 53 |
+
dataset = dataset.train_test_split(test_size=10000, seed=None)
|
| 54 |
+
train_dataset = dataset["train"]
|
| 55 |
+
valid_dataset = dataset["test"]
|
| 56 |
+
|
| 57 |
+
print(train_dataset)
|
| 58 |
+
print(valid_dataset)
|
| 59 |
+
return
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if __name__ == '__main__':
|
| 63 |
+
main()
|
examples/lib_service_4chan/step_2_train_model.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import platform
|
| 7 |
+
import re
|
| 8 |
+
from typing import Dict, List, Optional, Union
|
| 9 |
+
|
| 10 |
+
if platform.system() == "Windows":
|
| 11 |
+
from project_settings import project_path
|
| 12 |
+
else:
|
| 13 |
+
project_path = os.path.abspath("./")
|
| 14 |
+
project_path = Path(project_path)
|
| 15 |
+
|
| 16 |
+
hf_hub_cache = (project_path / "cache/huggingface/hub").as_posix()
|
| 17 |
+
|
| 18 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = hf_hub_cache
|
| 19 |
+
|
| 20 |
+
from datasets import load_dataset
|
| 21 |
+
import huggingface_hub
|
| 22 |
+
import torch
|
| 23 |
+
import torch.multiprocessing as mp
|
| 24 |
+
from transformers import HfArgumentParser
|
| 25 |
+
from transformers.data.data_collator import DataCollatorForLanguageModeling
|
| 26 |
+
from transformers.models.auto import AutoModelForCausalLM, AutoTokenizer
|
| 27 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
| 28 |
+
from transformers.trainer import Trainer
|
| 29 |
+
from transformers.trainer_callback import EarlyStoppingCallback
|
| 30 |
+
from transformers.training_args import TrainingArguments
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@dataclass
|
| 34 |
+
class ScriptArguments:
|
| 35 |
+
# dataset
|
| 36 |
+
dataset_path: str = field(default="qgyd2021/lip_service_4chan")
|
| 37 |
+
dataset_name: str = field(default=None)
|
| 38 |
+
dataset_split: str = field(default=None)
|
| 39 |
+
dataset_cache_dir: str = field(default=(project_path / "hub_datasets").as_posix())
|
| 40 |
+
dataset_streaming: bool = field(default=False)
|
| 41 |
+
num_workers: int = field(default=None if platform.system() == "Windows" else os.cpu_count() // 2)
|
| 42 |
+
|
| 43 |
+
# model
|
| 44 |
+
pretrained_model_name_or_path: str = field(
|
| 45 |
+
default="uer/gpt2-chinese-cluecorpussmall"
|
| 46 |
+
)
|
| 47 |
+
# pretrained_model_name_or_path: str = field(
|
| 48 |
+
# default=(project_path / "pretrained_models/gpt2-chinese-cluecorpussmall").as_posix()
|
| 49 |
+
# )
|
| 50 |
+
|
| 51 |
+
hf_token: str = field(default=None)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_args():
|
| 55 |
+
parser = HfArgumentParser(ScriptArguments)
|
| 56 |
+
args = parser.parse_args_into_dataclasses(return_remaining_strings=True)[0]
|
| 57 |
+
return args
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def train_model(local_rank, world_size, args):
|
| 61 |
+
os.environ["RANK"] = f"{local_rank}"
|
| 62 |
+
os.environ["LOCAL_RANK"] = f"{local_rank}"
|
| 63 |
+
os.environ["WORLD_SIZE"] = f"{world_size}"
|
| 64 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
| 65 |
+
os.environ["MASTER_PORT"] = "12355"
|
| 66 |
+
|
| 67 |
+
huggingface_hub.login(token=args.hf_token)
|
| 68 |
+
|
| 69 |
+
# dataset
|
| 70 |
+
dataset_dict = load_dataset(
|
| 71 |
+
path=args.dataset_path,
|
| 72 |
+
name=args.dataset_name,
|
| 73 |
+
split=args.dataset_split,
|
| 74 |
+
cache_dir=args.dataset_cache_dir,
|
| 75 |
+
# num_proc=args.num_workers if not args.dataset_streaming else None,
|
| 76 |
+
streaming=args.dataset_streaming,
|
| 77 |
+
)
|
| 78 |
+
print(dataset_dict)
|
| 79 |
+
|
| 80 |
+
dataset = dataset_dict["train"]
|
| 81 |
+
|
| 82 |
+
if args.dataset_streaming:
|
| 83 |
+
valid_dataset = dataset.take(args.valid_dataset_size)
|
| 84 |
+
train_dataset = dataset.skip(args.valid_dataset_size)
|
| 85 |
+
train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer_size, seed=None)
|
| 86 |
+
else:
|
| 87 |
+
dataset = dataset.train_test_split(test_size=4000, seed=None)
|
| 88 |
+
train_dataset = dataset["train"]
|
| 89 |
+
valid_dataset = dataset["test"]
|
| 90 |
+
|
| 91 |
+
# pretrained model
|
| 92 |
+
model: GPT2LMHeadModel = AutoModelForCausalLM.from_pretrained(args.pretrained_model_name_or_path)
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path)
|
| 94 |
+
|
| 95 |
+
# map
|
| 96 |
+
def encode(examples: dict):
|
| 97 |
+
questions_ = examples.pop("question")
|
| 98 |
+
answers_ = examples.pop("answer")
|
| 99 |
+
|
| 100 |
+
utterances = list()
|
| 101 |
+
for question, answer in zip(questions_, answers_):
|
| 102 |
+
if not isinstance(question, str):
|
| 103 |
+
continue
|
| 104 |
+
if not isinstance(answer, str):
|
| 105 |
+
continue
|
| 106 |
+
utterance = question + tokenizer.sep_token + answer
|
| 107 |
+
utterances.append(utterance)
|
| 108 |
+
|
| 109 |
+
utterances = tokenizer.__call__(
|
| 110 |
+
text=utterances,
|
| 111 |
+
truncation=True,
|
| 112 |
+
padding="longest",
|
| 113 |
+
max_length=512,
|
| 114 |
+
return_special_tokens_mask=True,
|
| 115 |
+
)
|
| 116 |
+
return utterances
|
| 117 |
+
|
| 118 |
+
train_dataset = train_dataset.map(
|
| 119 |
+
encode,
|
| 120 |
+
batched=True,
|
| 121 |
+
drop_last_batch=True,
|
| 122 |
+
batch_size=10,
|
| 123 |
+
num_proc=None,
|
| 124 |
+
cache_file_name="train.cache"
|
| 125 |
+
)
|
| 126 |
+
valid_dataset = valid_dataset.map(
|
| 127 |
+
encode,
|
| 128 |
+
batched=True,
|
| 129 |
+
drop_last_batch=True,
|
| 130 |
+
batch_size=10,
|
| 131 |
+
num_proc=None,
|
| 132 |
+
cache_file_name="valid.cache"
|
| 133 |
+
)
|
| 134 |
+
dataset_info = f"""
|
| 135 |
+
train dataset: {len(train_dataset)}
|
| 136 |
+
valid dataset: {len(valid_dataset)}
|
| 137 |
+
"""
|
| 138 |
+
dataset_info = re.sub(r"[\u0020]{4,}", "", dataset_info)
|
| 139 |
+
print(dataset_info)
|
| 140 |
+
|
| 141 |
+
# for k, v in model.named_parameters():
|
| 142 |
+
# if k.__contains__(".bias"):
|
| 143 |
+
# v.requires_grad = True
|
| 144 |
+
# else:
|
| 145 |
+
# v.requires_grad = False
|
| 146 |
+
|
| 147 |
+
# for k, v in model.named_parameters():
|
| 148 |
+
# if v.requires_grad is True:
|
| 149 |
+
# print(k)
|
| 150 |
+
|
| 151 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 152 |
+
tokenizer=tokenizer, mlm=False
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# training_args
|
| 156 |
+
training_args = TrainingArguments(
|
| 157 |
+
output_dir="output_dir",
|
| 158 |
+
evaluation_strategy="steps",
|
| 159 |
+
per_device_train_batch_size=8,
|
| 160 |
+
gradient_accumulation_steps=4,
|
| 161 |
+
learning_rate=2e-4,
|
| 162 |
+
weight_decay=0,
|
| 163 |
+
max_grad_norm=1.0,
|
| 164 |
+
num_train_epochs=1.0,
|
| 165 |
+
warmup_steps=1000,
|
| 166 |
+
logging_steps=100,
|
| 167 |
+
save_strategy="steps",
|
| 168 |
+
save_steps=100,
|
| 169 |
+
save_total_limit=2,
|
| 170 |
+
no_cuda=False,
|
| 171 |
+
fp16=True if torch.cuda.is_available() else False,
|
| 172 |
+
local_rank=local_rank,
|
| 173 |
+
ddp_backend="nccl",
|
| 174 |
+
remove_unused_columns=True,
|
| 175 |
+
load_best_model_at_end=True,
|
| 176 |
+
metric_for_best_model="loss",
|
| 177 |
+
greater_is_better=False,
|
| 178 |
+
report_to="tensorboard",
|
| 179 |
+
push_to_hub=True,
|
| 180 |
+
hub_model_id="lib_service_4chan",
|
| 181 |
+
hub_strategy="every_save",
|
| 182 |
+
gradient_checkpointing=True,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
partial_state_str = f"""
|
| 186 |
+
distributed_type: {training_args.distributed_state.distributed_type}
|
| 187 |
+
local_process_index: {training_args.distributed_state.local_process_index}
|
| 188 |
+
num_processes: {training_args.distributed_state.num_processes}
|
| 189 |
+
process_index: {training_args.distributed_state.process_index}
|
| 190 |
+
device: {training_args.distributed_state.device}
|
| 191 |
+
"""
|
| 192 |
+
partial_state_str = re.sub(r"[\u0020]{4,}", "", partial_state_str)
|
| 193 |
+
print(partial_state_str)
|
| 194 |
+
|
| 195 |
+
environ = f"""
|
| 196 |
+
RANK: {os.environ.get("RANK", -1)}
|
| 197 |
+
WORLD_SIZE: {os.environ.get("WORLD_SIZE", -1)}
|
| 198 |
+
LOCAL_RANK: {os.environ.get("LOCAL_RANK", -1)}
|
| 199 |
+
"""
|
| 200 |
+
environ = re.sub(r"[\u0020]{4,}", "", environ)
|
| 201 |
+
print(environ)
|
| 202 |
+
|
| 203 |
+
callbacks = [
|
| 204 |
+
EarlyStoppingCallback(early_stopping_patience=5)
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
trainer = Trainer(
|
| 208 |
+
model=model,
|
| 209 |
+
args=training_args,
|
| 210 |
+
data_collator=data_collator,
|
| 211 |
+
train_dataset=train_dataset,
|
| 212 |
+
eval_dataset=valid_dataset,
|
| 213 |
+
tokenizer=tokenizer,
|
| 214 |
+
callbacks=callbacks
|
| 215 |
+
)
|
| 216 |
+
train_result = trainer.train()
|
| 217 |
+
|
| 218 |
+
# 保存最好的 checkpoint
|
| 219 |
+
final_save_path = os.path.join(training_args.output_dir, "final")
|
| 220 |
+
trainer.save_model(final_save_path) # Saves the tokenizer too
|
| 221 |
+
# 保存训练指标
|
| 222 |
+
metrics = train_result.metrics
|
| 223 |
+
trainer.log_metrics("train", metrics)
|
| 224 |
+
trainer.save_metrics("train", metrics)
|
| 225 |
+
trainer.save_state()
|
| 226 |
+
|
| 227 |
+
tokenizer.save_pretrained(final_save_path)
|
| 228 |
+
return
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def train_on_cpu():
|
| 232 |
+
args = get_args()
|
| 233 |
+
|
| 234 |
+
train_model(0, 1, args)
|
| 235 |
+
return
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def train_on_kaggle_notebook():
|
| 239 |
+
"""
|
| 240 |
+
train on kaggle notebook with GPU T4 x2
|
| 241 |
+
|
| 242 |
+
from shutil import copyfile
|
| 243 |
+
copyfile(src = "../input/tempdataset/step_2_train_model.py", dst = "../working/step_2_train_model.py")
|
| 244 |
+
|
| 245 |
+
import step_2_train_model
|
| 246 |
+
step_2_train_model.train_on_kaggle_notebook()
|
| 247 |
+
|
| 248 |
+
"""
|
| 249 |
+
args = get_args()
|
| 250 |
+
|
| 251 |
+
world_size = torch.cuda.device_count()
|
| 252 |
+
print("world_size: {}".format(world_size))
|
| 253 |
+
|
| 254 |
+
mp.spawn(train_model,
|
| 255 |
+
args=(world_size, args),
|
| 256 |
+
nprocs=world_size,
|
| 257 |
+
join=True)
|
| 258 |
+
|
| 259 |
+
return
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
if __name__ == '__main__':
|
| 263 |
+
train_on_cpu()
|