File size: 1,383 Bytes
f3fa404
51d003a
 
a8c1efd
 
a048070
90645d8
821ad4a
51d003a
3156450
 
 
affbfdd
 
 
 
 
dfb642b
affbfdd
 
3156450
90645d8
 
e1dd5a7
 
 
3f50db6
e1dd5a7
60937e6
e1dd5a7
 
60937e6
e1dd5a7
 
3156450
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from CODE.PPLUIE.config import model_dict
import gradio as gr

def show_available_llms():
    chaine = ""
    for k in model_dict.keys():
        chaine+="\t"+ k + "\n"
    return f"Available models with ParaPLUIE: \n\n{chaine}"

with gr.Blocks() as demo:
    gr.Markdown(
    """
    # W.I.P
    """)
    gr.Markdown(
    """
    # ParaPLUIE (Paraphrase Generation Evaluation Powered by an LLM)
    ParaPLUIE is a metric for evaluating the semantic proximity of two sentences. 
    ParaPLUIE use the perplexity of an LLM to compute a confidence score.
    It has shown the highest correlation with human judgement on paraphrase classification meanwhile reamin the computional cost low as it roughtly equal to one token generation cost.
    """)
    text_box = gr.Textbox(show_available_llms(), show_label=False)

    # with gr.Row():
    #     gr.Textbox(placeholder="Have you ever seen a tsunami ?", label="Source")
    #     gr.Textbox(placeholder="Have you ever seen a tiramisu ?", label="Hypothesis")

    with gr.Row():
        with gr.Column(scale=3):
            text1 = gr.Textbox(placeholder="Have you ever seen a tsunami ?", label="Source")
            text2 = gr.Textbox(placeholder="Have you ever seen a tiramisu ?", label="Hypothesis")
        with gr.Column(scale=1):
            btn1 = gr.Button("Compute")
            score = gr.Textbox(label="Score")
demo.launch()