Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
from threading import Thread
|
| 5 |
import re
|
| 6 |
import time
|
|
@@ -22,6 +22,40 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 22 |
device_map='auto',
|
| 23 |
trust_remote_code=True)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
@spaces.GPU
|
| 27 |
def bot_streaming(message, history):
|
|
@@ -60,10 +94,13 @@ def bot_streaming(message, history):
|
|
| 60 |
add_generation_prompt=True)
|
| 61 |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
| 62 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
| 66 |
-
generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100)
|
| 67 |
generated_text = ""
|
| 68 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 69 |
thread.start()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
|
| 4 |
from threading import Thread
|
| 5 |
import re
|
| 6 |
import time
|
|
|
|
| 22 |
device_map='auto',
|
| 23 |
trust_remote_code=True)
|
| 24 |
|
| 25 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
| 26 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
| 27 |
+
self.keywords = keywords
|
| 28 |
+
self.keyword_ids = []
|
| 29 |
+
self.max_keyword_len = 0
|
| 30 |
+
for keyword in keywords:
|
| 31 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
| 32 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
| 33 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
| 34 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
| 35 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
| 36 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
| 37 |
+
self.tokenizer = tokenizer
|
| 38 |
+
self.start_len = input_ids.shape[1]
|
| 39 |
+
|
| 40 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 41 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
| 42 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
| 43 |
+
for keyword_id in self.keyword_ids:
|
| 44 |
+
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
| 45 |
+
if torch.equal(truncated_output_ids, keyword_id):
|
| 46 |
+
return True
|
| 47 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
| 48 |
+
for keyword in self.keywords:
|
| 49 |
+
if keyword in outputs:
|
| 50 |
+
return True
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 54 |
+
outputs = []
|
| 55 |
+
for i in range(output_ids.shape[0]):
|
| 56 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
| 57 |
+
return all(outputs)
|
| 58 |
+
|
| 59 |
|
| 60 |
@spaces.GPU
|
| 61 |
def bot_streaming(message, history):
|
|
|
|
| 94 |
add_generation_prompt=True)
|
| 95 |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
| 96 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
| 97 |
+
stop_str = '<|im_end|>'
|
| 98 |
+
keywords = [stop_str]
|
| 99 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 100 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 101 |
|
| 102 |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
| 103 |
+
generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100, stopping_criteria=[stopping_criteria])
|
| 104 |
generated_text = ""
|
| 105 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 106 |
thread.start()
|