Update app.py
Browse files
app.py
CHANGED
|
@@ -45,32 +45,26 @@ fdic = {
|
|
| 45 |
"weight" : "bold"
|
| 46 |
}
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
-
def infer(model, in_pil_img):
|
| 50 |
|
|
|
|
| 51 |
results = None
|
| 52 |
if model == "detr-resnet-101":
|
| 53 |
results = detector101(in_pil_img)
|
| 54 |
else:
|
| 55 |
results = detector50(in_pil_img)
|
| 56 |
-
|
| 57 |
return results
|
| 58 |
|
| 59 |
|
| 60 |
-
#######################################
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def query_data(model, in_pil_img: Image.Image):
|
| 64 |
-
return infer(model, in_pil_img)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
def get_figure(in_pil_img):
|
| 69 |
plt.figure(figsize=(16, 10))
|
| 70 |
plt.imshow(in_pil_img)
|
| 71 |
|
| 72 |
ax = plt.gca()
|
| 73 |
-
|
| 74 |
in_results = query_data(in_pil_img)
|
| 75 |
|
| 76 |
for prediction in in_results:
|
|
@@ -88,18 +82,8 @@ def get_figure(in_pil_img):
|
|
| 88 |
return plt.gcf()
|
| 89 |
|
| 90 |
|
| 91 |
-
def infer(in_pil_img):
|
| 92 |
-
figure = get_figure(in_pil_img)
|
| 93 |
-
|
| 94 |
-
buf = io.BytesIO()
|
| 95 |
-
figure.savefig(buf, bbox_inches='tight')
|
| 96 |
-
buf.seek(0)
|
| 97 |
-
output_pil_img = Image.open(buf)
|
| 98 |
-
|
| 99 |
-
return output_pil_img
|
| 100 |
-
|
| 101 |
-
|
| 102 |
def process_single_frame(frame):
|
|
|
|
| 103 |
# 将 BGR 转换为 RGB
|
| 104 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 105 |
|
|
@@ -118,6 +102,7 @@ def process_single_frame(frame):
|
|
| 118 |
|
| 119 |
|
| 120 |
def infer_video(input_video_path):
|
|
|
|
| 121 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
| 122 |
# output_video_path = Path(tmp_dir) / "output.mp4"
|
| 123 |
cap = cv2.VideoCapture(input_video_path)
|
|
|
|
| 45 |
"weight" : "bold"
|
| 46 |
}
|
| 47 |
|
| 48 |
+
#######################################
|
| 49 |
|
|
|
|
| 50 |
|
| 51 |
+
def query_data(model, in_pil_img: Image.Image):
|
| 52 |
results = None
|
| 53 |
if model == "detr-resnet-101":
|
| 54 |
results = detector101(in_pil_img)
|
| 55 |
else:
|
| 56 |
results = detector50(in_pil_img)
|
| 57 |
+
print(f"检测结果:{results}")
|
| 58 |
return results
|
| 59 |
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
def get_figure(in_pil_img):
|
| 63 |
plt.figure(figsize=(16, 10))
|
| 64 |
plt.imshow(in_pil_img)
|
| 65 |
|
| 66 |
ax = plt.gca()
|
| 67 |
+
print(f"图像尺寸:{in_pil_img.size}")
|
| 68 |
in_results = query_data(in_pil_img)
|
| 69 |
|
| 70 |
for prediction in in_results:
|
|
|
|
| 82 |
return plt.gcf()
|
| 83 |
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
def process_single_frame(frame):
|
| 86 |
+
print(f"开始处理单帧")
|
| 87 |
# 将 BGR 转换为 RGB
|
| 88 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 89 |
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
def infer_video(input_video_path):
|
| 105 |
+
print(f"开始处理视频 {input_video_path}")
|
| 106 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
| 107 |
# output_video_path = Path(tmp_dir) / "output.mp4"
|
| 108 |
cap = cv2.VideoCapture(input_video_path)
|