Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import torch
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
import matplotlib.patches as patches
|
| 9 |
|
| 10 |
-
from random import choice
|
| 11 |
-
import io
|
| 12 |
|
| 13 |
detector50 = pipeline(model="facebook/detr-resnet-50")
|
| 14 |
|
| 15 |
detector101 = pipeline(model="facebook/detr-resnet-101")
|
| 16 |
|
| 17 |
|
| 18 |
-
import gradio as gr
|
| 19 |
|
| 20 |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
| 21 |
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
| 22 |
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
| 23 |
|
| 24 |
fdic = {
|
| 25 |
-
"family" : "Impact",
|
| 26 |
"style" : "italic",
|
| 27 |
"size" : 15,
|
| 28 |
"color" : "yellow",
|
|
@@ -30,12 +46,33 @@ fdic = {
|
|
| 30 |
}
|
| 31 |
|
| 32 |
|
| 33 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
plt.figure(figsize=(16, 10))
|
| 35 |
plt.imshow(in_pil_img)
|
| 36 |
-
|
| 37 |
ax = plt.gca()
|
| 38 |
|
|
|
|
|
|
|
| 39 |
for prediction in in_results:
|
| 40 |
selected_color = choice(COLORS)
|
| 41 |
|
|
@@ -50,15 +87,8 @@ def get_figure(in_pil_img, in_results):
|
|
| 50 |
return plt.gcf()
|
| 51 |
|
| 52 |
|
| 53 |
-
def infer(
|
| 54 |
-
|
| 55 |
-
results = None
|
| 56 |
-
if model == "detr-resnet-101":
|
| 57 |
-
results = detector101(in_pil_img)
|
| 58 |
-
else:
|
| 59 |
-
results = detector50(in_pil_img)
|
| 60 |
-
|
| 61 |
-
figure = get_figure(in_pil_img, results)
|
| 62 |
|
| 63 |
buf = io.BytesIO()
|
| 64 |
figure.savefig(buf, bbox_inches='tight')
|
|
@@ -68,39 +98,91 @@ def infer(model, in_pil_img):
|
|
| 68 |
return output_pil_img
|
| 69 |
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""")
|
| 79 |
-
|
| 80 |
-
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""")
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.Row():
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
|
| 100 |
-
gr.HTML("""<ul>""")
|
| 101 |
-
gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""")
|
| 102 |
-
gr.HTML("""</ul>""")
|
| 103 |
|
|
|
|
| 104 |
|
| 105 |
#demo.queue()
|
| 106 |
demo.launch(debug=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from gradio_webrtc import WebRTC
|
| 4 |
+
import requests
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
|
| 9 |
+
from random import choice
|
| 10 |
+
import io
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
import cv2
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
from io import BytesIO
|
| 18 |
+
import random
|
| 19 |
+
import tempfile
|
| 20 |
+
from pathlib import Path
|
| 21 |
|
| 22 |
import torch
|
| 23 |
from transformers import pipeline
|
| 24 |
|
| 25 |
from PIL import Image
|
| 26 |
|
|
|
|
| 27 |
import matplotlib.patches as patches
|
| 28 |
|
|
|
|
|
|
|
| 29 |
|
| 30 |
detector50 = pipeline(model="facebook/detr-resnet-50")
|
| 31 |
|
| 32 |
detector101 = pipeline(model="facebook/detr-resnet-101")
|
| 33 |
|
| 34 |
|
|
|
|
| 35 |
|
| 36 |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
| 37 |
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
| 38 |
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
| 39 |
|
| 40 |
fdic = {
|
| 41 |
+
# "family" : "Impact",
|
| 42 |
"style" : "italic",
|
| 43 |
"size" : 15,
|
| 44 |
"color" : "yellow",
|
|
|
|
| 46 |
}
|
| 47 |
|
| 48 |
|
| 49 |
+
def infer(model, in_pil_img):
|
| 50 |
+
|
| 51 |
+
results = None
|
| 52 |
+
if model == "detr-resnet-101":
|
| 53 |
+
results = detector101(in_pil_img)
|
| 54 |
+
else:
|
| 55 |
+
results = detector50(in_pil_img)
|
| 56 |
+
|
| 57 |
+
return results
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
#######################################
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def query_data(model, in_pil_img: Image.Image):
|
| 64 |
+
return infer(model, in_pil_img)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_figure(in_pil_img):
|
| 69 |
plt.figure(figsize=(16, 10))
|
| 70 |
plt.imshow(in_pil_img)
|
| 71 |
+
|
| 72 |
ax = plt.gca()
|
| 73 |
|
| 74 |
+
in_results = query_data(in_pil_img)
|
| 75 |
+
|
| 76 |
for prediction in in_results:
|
| 77 |
selected_color = choice(COLORS)
|
| 78 |
|
|
|
|
| 87 |
return plt.gcf()
|
| 88 |
|
| 89 |
|
| 90 |
+
def infer(in_pil_img):
|
| 91 |
+
figure = get_figure(in_pil_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
buf = io.BytesIO()
|
| 94 |
figure.savefig(buf, bbox_inches='tight')
|
|
|
|
| 98 |
return output_pil_img
|
| 99 |
|
| 100 |
|
| 101 |
+
def process_single_frame(frame):
|
| 102 |
+
# 将 BGR 转换为 RGB
|
| 103 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 104 |
+
|
| 105 |
+
# 创建 PIL 图像对象
|
| 106 |
+
pil_image = Image.fromarray(rgb_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# 获取带有标注信息的图像
|
| 109 |
+
figure = get_figure(pil_image)
|
|
|
|
| 110 |
|
| 111 |
+
buf = BytesIO()
|
| 112 |
+
figure.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
| 113 |
+
buf.seek(0)
|
| 114 |
+
annotated_image = Image.open(buf).convert('RGB')
|
| 115 |
+
|
| 116 |
+
return np.array(annotated_image)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def infer_video(input_video_path):
|
| 120 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
| 121 |
+
# output_video_path = Path(tmp_dir) / "output.mp4"
|
| 122 |
+
cap = cv2.VideoCapture(input_video_path)
|
| 123 |
+
|
| 124 |
+
if not cap.isOpened():
|
| 125 |
+
raise ValueError("无法打开输入视频文件")
|
| 126 |
+
|
| 127 |
+
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 128 |
+
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 129 |
+
# fps = cap.get(cv2.CAP_PROP_FPS)
|
| 130 |
+
# fourcc = int(cap.get(cv2.CAP_PROP_FOURCC)) # 使用原始视频的编码器
|
| 131 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 获取总帧数
|
| 132 |
+
|
| 133 |
+
# out = cv2.VideoWriter(str(output_video_path), fourcc, fps, (width, height))
|
| 134 |
+
|
| 135 |
+
frame_count = 0
|
| 136 |
+
try:
|
| 137 |
+
while frame_count < total_frames:
|
| 138 |
+
ret, frame = cap.read()
|
| 139 |
+
if not ret:
|
| 140 |
+
print(f"提前结束:在第 {frame_count} 帧时无法读取帧")
|
| 141 |
+
break
|
| 142 |
+
|
| 143 |
+
frame_count += 1
|
| 144 |
+
|
| 145 |
+
# 处理单帧并转换为 OpenCV 格式(BGR)
|
| 146 |
+
processed_frame = process_single_frame(frame)
|
| 147 |
+
bgr_frame = cv2.cvtColor(processed_frame, cv2.COLOR_RGB2BGR)
|
| 148 |
+
|
| 149 |
+
yield bgr_frame
|
| 150 |
+
|
| 151 |
+
# 可选:显示进度
|
| 152 |
+
if frame_count % 30 == 0:
|
| 153 |
+
print(f"已处理 {frame_count}/{total_frames} 帧")
|
| 154 |
+
|
| 155 |
+
# if frame_count == 48:
|
| 156 |
+
# print("测试结束")
|
| 157 |
+
# return None
|
| 158 |
+
|
| 159 |
+
finally:
|
| 160 |
+
cap.release()
|
| 161 |
+
|
| 162 |
+
return None
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# 更新 Gradio 接口以支持视频输入和输出
|
| 166 |
+
with gr.Blocks(title="长沙电网项目",
|
| 167 |
+
css=".gradio-container {background:lightyellow;}"
|
| 168 |
+
) as demo:
|
| 169 |
+
gr.HTML("<div style='font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;'>长沙电网项目</div>")
|
| 170 |
+
|
| 171 |
with gr.Row():
|
| 172 |
+
input_video = gr.Video(label="输入视频")
|
| 173 |
+
output_video = WebRTC(label="WebRTC Stream",
|
| 174 |
+
rtc_configuration=None,
|
| 175 |
+
mode="receive",
|
| 176 |
+
modality="video")
|
| 177 |
+
detect = gr.Button("Detect", variant="primary")
|
| 178 |
+
output_video.stream(
|
| 179 |
+
fn=infer_video,
|
| 180 |
+
inputs=[input_video],
|
| 181 |
+
outputs=[output_video],
|
| 182 |
+
trigger=detect.click
|
| 183 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
demo.launch(debug=True)
|
| 186 |
|
| 187 |
#demo.queue()
|
| 188 |
demo.launch(debug=True)
|