Spaces:
Running
on
Zero
Running
on
Zero
| # Depth Anything V2 for Metric Depth Estimation | |
|  | |
| We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively. | |
| ## Usage | |
| ### Inference | |
| Please first download our pre-trained metric depth models and put them under the `checkpoints` directory: | |
| - [Indoor model from Hypersim](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true) | |
| - [Outdoor model from Virtual KITTI 2](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true) | |
| ```bash | |
| # indoor scenes | |
| python run.py \ | |
| --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ | |
| --max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy] | |
| # outdoor scenes | |
| python run.py \ | |
| --encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \ | |
| --max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy] | |
| ``` | |
| You can also project 2D images to point clouds: | |
| ```bash | |
| python depth_to_pointcloud.py \ | |
| --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ | |
| --max-depth 20 --img-path <path> --outdir <outdir> | |
| ``` | |
| ### Reproduce training | |
| Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then: | |
| ```bash | |
| bash dist_train.sh | |
| ``` | |
| ## Citation | |
| If you find this project useful, please consider citing: | |
| ```bibtex | |
| @article{depth_anything_v2, | |
| title={Depth Anything V2}, | |
| author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, | |
| journal={arXiv:2406.09414}, | |
| year={2024} | |
| } | |
| ``` | |