| import gradio as gr | |
| import numpy as np | |
| import random | |
| import generation_sdxl | |
| import functools | |
| from diffusers import DiffusionPipeline, UNet2DConditionModel | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if torch.cuda.is_available(): | |
| torch.cuda.max_memory_allocated(device=device) | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe = pipe.to(device) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
| pipe = pipe.to(device) | |
| unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sdxl-cfg-distill-unet") | |
| pipe.unet = unet | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| prompt = ['Long-exposure night photography of a starry sky over a mountain range, with light trails.'] | |
| text_encoders = [pipe.text_encoder, pipe.text_encoder_2] | |
| tokenizers = [pipe.tokenizer, pipe.tokenizer_2] | |
| compute_embeddings_fn = functools.partial( | |
| generation_sdxl.compute_embeddings, | |
| proportion_empty_prompts=0, | |
| text_encoders=text_encoders, | |
| tokenizers=tokenizers, | |
| ) | |
| images = generation_sdxl.sample_deterministic( | |
| pipe, | |
| prompt, | |
| num_inference_steps=4, | |
| generator=generator, | |
| guidance_scale=7.0, | |
| is_sdxl=True, | |
| timesteps=[249, 499, 699, 999], | |
| use_dynamic_guidance=False, | |
| tau1=1.0, | |
| tau2=1.0, | |
| compute_embeddings_fn=compute_embeddings_fn | |
| )[0] | |
| return images | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Text-to-Image Gradio Template | |
| Currently running on {power_device}. | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=12, | |
| step=1, | |
| value=2, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt] | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch(share=True) | |