Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| from sentence_transformers import SentenceTransformer | |
| def app(): | |
| st.title("Text Similarity") | |
| model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
| with st.container(): | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| word_to_embed1 = st.text_input("Text 1", value="The most vulnerable countries are seeking ‘loss and damage’ compensation from the biggest polluters.",) | |
| with col2: | |
| word_to_embed2 = st.text_input("Text 2", value="COP27 opens amid compounding crises of war, warming and economic instability.",) | |
| if st.button("Embed"): | |
| with st.spinner("Embedding comparing your inputs"): | |
| document = [word_to_embed1 ,word_to_embed2] | |
| #Encode paragraphs | |
| document_embeddings = model.encode(document, show_progress_bar=False) | |
| #Compute cosine similarity between labels sentences and paragraphs | |
| similarity_matrix = cosine_similarity(document_embeddings) | |
| st.write("Text similarity:", round(similarity_matrix[0][1]*100,2),"%") |