Spaces:
Sleeping
Sleeping
Update apps/intro.py
Browse files- apps/intro.py +25 -1
apps/intro.py
CHANGED
|
@@ -1 +1,25 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import plotly.express as px
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import umap.umap_ as umap
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import os
|
| 7 |
+
import joblib
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
with st.container():
|
| 11 |
+
question = st.text_input("Please enter your text here and we will embed it for you.",
|
| 12 |
+
value="Woman",)
|
| 13 |
+
|
| 14 |
+
if st.button("Embed"):
|
| 15 |
+
with st.spinner("👑 load language model (sentence transformer)"):
|
| 16 |
+
model_name = 'sentence-transformers/all-MiniLM-L6-v2'
|
| 17 |
+
model = SentenceTransformer(model_name)
|
| 18 |
+
umap_name = "peter200/umap_embed_3d_all-MiniLM-L6-v2.sav"
|
| 19 |
+
umap_model = joblib.load(umap_name)
|
| 20 |
+
docs_umap = umap_model.transform(docs_embeddings)
|
| 21 |
+
|
| 22 |
+
examples_embeddings = model.encode(question)
|
| 23 |
+
examples_umap = umap_model.transform(examples_embeddings)
|
| 24 |
+
|
| 25 |
+
st.write(examples_umap.shape)
|