Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,26 +3,35 @@ import spaces
|
|
| 3 |
import torch
|
| 4 |
from diffusers import AuraFlowPipeline
|
| 5 |
import random
|
|
|
|
| 6 |
|
| 7 |
pipe = AuraFlowPipeline.from_pretrained("purplesmartai/pony-v7-base", torch_dtype=torch.float16)
|
| 8 |
pipe = pipe.to("cuda")
|
| 9 |
|
| 10 |
@spaces.GPU()
|
| 11 |
-
def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 12 |
if seed < 0:
|
| 13 |
seed = random.randint(0, 2**32 - 1)
|
| 14 |
|
| 15 |
generator = torch.Generator("cuda").manual_seed(int(seed))
|
| 16 |
|
| 17 |
-
|
| 18 |
-
prompt
|
| 19 |
-
negative_prompt
|
| 20 |
-
height
|
| 21 |
-
width
|
| 22 |
-
num_inference_steps
|
| 23 |
-
guidance_scale
|
| 24 |
-
generator
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
return image, seed
|
| 27 |
|
| 28 |
iface = gr.Interface(
|
|
@@ -34,6 +43,7 @@ iface = gr.Interface(
|
|
| 34 |
gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=1024),
|
| 35 |
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=30),
|
| 36 |
gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.5),
|
|
|
|
| 37 |
gr.Number(label="Seed (set to -1 for random)", value=-1, minimum=-1)
|
| 38 |
],
|
| 39 |
outputs=[
|
|
|
|
| 3 |
import torch
|
| 4 |
from diffusers import AuraFlowPipeline
|
| 5 |
import random
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
pipe = AuraFlowPipeline.from_pretrained("purplesmartai/pony-v7-base", torch_dtype=torch.float16)
|
| 9 |
pipe = pipe.to("cuda")
|
| 10 |
|
| 11 |
@spaces.GPU()
|
| 12 |
+
def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, sigmas_factor, seed, progress=gr.Progress(track_tqdm=True)):
|
| 13 |
if seed < 0:
|
| 14 |
seed = random.randint(0, 2**32 - 1)
|
| 15 |
|
| 16 |
generator = torch.Generator("cuda").manual_seed(int(seed))
|
| 17 |
|
| 18 |
+
pipeline_args = {
|
| 19 |
+
"prompt": prompt,
|
| 20 |
+
"negative_prompt": negative_prompt,
|
| 21 |
+
"height": int(height),
|
| 22 |
+
"width": int(width),
|
| 23 |
+
"num_inference_steps": int(num_inference_steps),
|
| 24 |
+
"guidance_scale": guidance_scale,
|
| 25 |
+
"generator": generator,
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
if sigmas_factor != 1.0:
|
| 29 |
+
steps = int(num_inference_steps)
|
| 30 |
+
sigmas = np.linspace(1.0, 1 / steps, steps)
|
| 31 |
+
sigmas = sigmas * sigmas_factor
|
| 32 |
+
pipeline_args["sigmas"] = sigmas.tolist()
|
| 33 |
+
|
| 34 |
+
image = pipe(**pipeline_args).images[0]
|
| 35 |
return image, seed
|
| 36 |
|
| 37 |
iface = gr.Interface(
|
|
|
|
| 43 |
gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=1024),
|
| 44 |
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=30),
|
| 45 |
gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.5),
|
| 46 |
+
gr.Slider(label="Sigmas Factor", minimum=0.1, maximum=2.0, step=0.01, value=1.0),
|
| 47 |
gr.Number(label="Seed (set to -1 for random)", value=-1, minimum=-1)
|
| 48 |
],
|
| 49 |
outputs=[
|