from fastapi import FastAPI,Query from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os from pydantic import BaseModel from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles # ✅ Force Hugging Face cache to /tmp (writable in Spaces) os.environ["HF_HOME"] = "/tmp" os.environ["TRANSFORMERS_CACHE"] = "/tmp" model_id = "rabiyulfahim/qa_python_gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp") model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp") app = FastAPI(title="QA GPT2 API UI", description="Serving HuggingFace model with FastAPI") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Request schema class QueryRequest(BaseModel): question: str max_new_tokens: int = 50 temperature: float = 0.7 top_p: float = 0.9 @app.get("/") def home(): return {"message": "Welcome to QA GPT2 API 🚀"} @app.get("/ask") def ask(question: str, max_new_tokens: int = 50): inputs = tokenizer(question, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=max_new_tokens) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"question": question, "answer": answer} # Mount static folder app.mount("/static", StaticFiles(directory="static"), name="static") @app.get("/ui", response_class=HTMLResponse) def serve_ui(): html_path = os.path.join("static", "index.html") with open(html_path, "r", encoding="utf-8") as f: return HTMLResponse(f.read()) # Health check endpoint @app.get("/health") def health(): return {"status": "ok"} # Inference endpoint @app.post("/predict") def predict(request: QueryRequest): inputs = tokenizer(request.question, return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=request.max_new_tokens, do_sample=True, temperature=0.7, top_p=0.9, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True ) answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) return { "question": request.question, "answer": answer } @app.get("/answers") def predict(question: str = Query(..., description="The question to ask"), max_new_tokens: int = Query(50, description="Max new tokens to generate")): # Tokenize the input question inputs = tokenizer(question, return_tensors="pt") # Generate output from model outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7, top_p=0.9, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True ) # Decode output answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) return { "question": question, "answer": answer }