File size: 28,986 Bytes
066effd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# ------------------------------------------------------------------------
# RF-DETR
# Copyright (c) 2025 Roboflow. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR)
# Copyright (c) 2024 Baidu. All Rights Reserved.
# ------------------------------------------------------------------------

"""
OnnxOptimizer
"""
import os
from collections import OrderedDict
from copy import deepcopy

import numpy as np
import onnx
import torch
from onnx import shape_inference
import onnx_graphsurgeon as gs
from polygraphy.backend.onnx.loader import fold_constants
from onnx_graphsurgeon.logger.logger import G_LOGGER

from .symbolic import CustomOpSymbolicRegistry


class OnnxOptimizer():
    def __init__(
        self,
        input,
        severity=G_LOGGER.INFO
    ):
        if isinstance(input, str):
            onnx_graph = self.load_onnx(input)
        else:
            onnx_graph = input
        self.graph = gs.import_onnx(onnx_graph)
        self.severity = severity
        self.set_severity(severity)
    
    def set_severity(self, severity):
        G_LOGGER.severity = severity

    def load_onnx(self, onnx_path:str):
        """Load onnx from file
        """
        assert os.path.isfile(onnx_path), f"not found onnx file: {onnx_path}" 
        onnx_graph = onnx.load(onnx_path)
        G_LOGGER.info(f"load onnx file: {onnx_path}")
        return onnx_graph
    
    def save_onnx(self, onnx_path:str):
        onnx_graph = gs.export_onnx(self.graph)
        G_LOGGER.info(f"save onnx file: {onnx_path}")
        onnx.save(onnx_graph, onnx_path)

    def info(self, prefix=''):
        G_LOGGER.verbose(f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs")

    def cleanup(self, return_onnx=False):
        self.graph.cleanup().toposort()
        if return_onnx:
            return gs.export_onnx(self.graph)

    def select_outputs(self, keep, names=None):
        self.graph.outputs = [self.graph.outputs[o] for o in keep]
        if names:
            for i, name in enumerate(names):
                self.graph.outputs[i].name = name

    def find_node_input(self, node, name:str=None, value=None) -> int:
        for i, inp in enumerate(node.inputs):
            if isinstance(name, str) and inp.name == name:
                index = i
            elif inp == value:
                index = i
        assert index >= 0, f"not found {name}({value}) in node.inputs"
        return index

    def find_node_output(self, node, name:str=None, value=None) -> int:
        for i, inp in enumerate(node.outputs):
            if isinstance(name, str) and inp.name == name:
                index = i
            elif inp == value:
                index = i
        assert index >= 0, f"not found {name}({value}) in node.outputs"
        return index

    def common_opt(self, return_onnx=False):
        for fn in CustomOpSymbolicRegistry._OPTIMIZER:
            fn(self)
            self.cleanup()
        onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=False)
        if onnx_graph.ByteSize() > 2147483648:
            raise TypeError("ERROR: model size exceeds supported 2GB limit")
        else:
            onnx_graph = shape_inference.infer_shapes(onnx_graph)
        self.graph = gs.import_onnx(onnx_graph)
        self.cleanup()
        if return_onnx:
            return onnx_graph

    def resize_fix(self):
        '''
        This function loops through the graph looking for Resize nodes that uses scales for resize (has 3 inputs).
        It substitutes found Resize with Resize that takes the size of the output tensor instead of scales.
        It adds Shape->Slice->Concat
                Shape->Slice----^     subgraph to the graph to extract the shape of the output tensor.
        This fix is required for the dynamic shape support.
        '''
        mResizeNodes = 0
        for node in self.graph.nodes:
            if node.op == "Resize" and len(node.inputs) == 3:
                name = node.name + "/"
                
                add_node = node.o().o().i(1)
                div_node = node.i()
                
                shape_hw_out = gs.Variable(name=name + "shape_hw_out", dtype=np.int64, shape=[4])
                shape_hw = gs.Node(op="Shape", name=name+"shape_hw", inputs=[add_node.outputs[0]], outputs=[shape_hw_out])

                const_zero = gs.Constant(name=name + "const_zero", values=np.array([0], dtype=np.int64))
                const_two = gs.Constant(name=name + "const_two", values=np.array([2], dtype=np.int64))
                const_four = gs.Constant(name=name + "const_four", values=np.array([4], dtype=np.int64))

                slice_hw_out = gs.Variable(name=name + "slice_hw_out", dtype=np.int64, shape=[2])
                slice_hw = gs.Node(op="Slice", name=name+"slice_hw", inputs=[shape_hw_out, const_two, const_four, const_zero], outputs=[slice_hw_out])

                shape_bc_out = gs.Variable(name=name + "shape_bc_out", dtype=np.int64, shape=[2])
                shape_bc = gs.Node(op="Shape", name=name+"shape_bc", inputs=[div_node.outputs[0]], outputs=[shape_bc_out])

                slice_bc_out = gs.Variable(name=name + "slice_bc_out", dtype=np.int64, shape=[2])
                slice_bc = gs.Node(op="Slice", name=name+"slice_bc", inputs=[shape_bc_out, const_zero, const_two, const_zero], outputs=[slice_bc_out])

                concat_bchw_out = gs.Variable(name=name + "concat_bchw_out", dtype=np.int64, shape=[4])
                concat_bchw = gs.Node(op="Concat", name=name+"concat_bchw", attrs={"axis": 0}, inputs=[slice_bc_out, slice_hw_out], outputs=[concat_bchw_out])

                none_var = gs.Variable.empty()

                resize_bchw = gs.Node(op="Resize", name=name+"resize_bchw", attrs=node.attrs, inputs=[node.inputs[0], none_var, none_var, concat_bchw_out], outputs=[node.outputs[0]])

                self.graph.nodes.extend([shape_hw, slice_hw, shape_bc, slice_bc, concat_bchw, resize_bchw])

                node.inputs = []
                node.outputs = []

                mResizeNodes += 1

        self.cleanup()
        return mResizeNodes

    def adjustAddNode(self):
        nAdjustAddNode = 0
        for node in self.graph.nodes:
            # Change the bias const to the second input to allow Gemm+BiasAdd fusion in TRT.
            if node.op in ["Add"] and isinstance(node.inputs[0], gs.ir.tensor.Constant):
                tensor = node.inputs[1]
                bias = node.inputs[0]
                node.inputs = [tensor, bias]
                nAdjustAddNode += 1

        self.cleanup()
        return nAdjustAddNode

    def decompose_instancenorms(self):
        nRemoveInstanceNorm = 0
        for node in self.graph.nodes:
            if node.op == "InstanceNormalization":
                name = node.name + "/"
                input_tensor = node.inputs[0]
                output_tensor = node.outputs[0]
                mean_out = gs.Variable(name=name + "mean_out")
                mean_node = gs.Node(op="ReduceMean", name=name + "mean_node", attrs={"axes": [-1]}, inputs=[input_tensor], outputs=[mean_out])
                sub_out = gs.Variable(name=name + "sub_out")
                sub_node = gs.Node(op="Sub", name=name + "sub_node", attrs={}, inputs=[input_tensor, mean_out], outputs=[sub_out])
                pow_out = gs.Variable(name=name + "pow_out")
                pow_const = gs.Constant(name=name + "pow_const", values=np.array([2.0], dtype=np.float32))
                pow_node = gs.Node(op="Pow", name=name + "pow_node", attrs={}, inputs=[sub_out, pow_const], outputs=[pow_out])
                mean2_out = gs.Variable(name=name + "mean2_out")
                mean2_node = gs.Node(op="ReduceMean", name=name + "mean2_node", attrs={"axes": [-1]}, inputs=[pow_out], outputs=[mean2_out])
                epsilon_out = gs.Variable(name=name + "epsilon_out")
                epsilon_const = gs.Constant(name=name + "epsilon_const", values=np.array([node.attrs["epsilon"]], dtype=np.float32))
                epsilon_node = gs.Node(op="Add", name=name + "epsilon_node", attrs={}, inputs=[mean2_out, epsilon_const], outputs=[epsilon_out])
                sqrt_out = gs.Variable(name=name + "sqrt_out")
                sqrt_node = gs.Node(op="Sqrt", name=name + "sqrt_node", attrs={}, inputs=[epsilon_out], outputs=[sqrt_out])
                div_out = gs.Variable(name=name + "div_out")
                div_node = gs.Node(op="Div", name=name + "div_node", attrs={}, inputs=[sub_out, sqrt_out], outputs=[div_out])
                constantScale = gs.Constant("InstanceNormScaleV-" + str(nRemoveInstanceNorm), np.ascontiguousarray(node.inputs[1].inputs[0].attrs["value"].values.reshape(1, 32, 1)))
                constantBias = gs.Constant("InstanceBiasV-" + str(nRemoveInstanceNorm), np.ascontiguousarray(node.inputs[2].inputs[0].attrs["value"].values.reshape(1, 32, 1)))
                mul_out = gs.Variable(name=name + "mul_out")
                mul_node = gs.Node(op="Mul", name=name + "mul_node", attrs={}, inputs=[div_out, constantScale], outputs=[mul_out])
                add_node = gs.Node(op="Add", name=name + "add_node", attrs={}, inputs=[mul_out, constantBias], outputs=[output_tensor])
                self.graph.nodes.extend([mean_node, sub_node, pow_node, mean2_node, epsilon_node, sqrt_node, div_node, mul_node, add_node])
                node.inputs = []
                node.outputs = []
                nRemoveInstanceNorm += 1

        self.cleanup()
        return nRemoveInstanceNorm

    def insert_groupnorm_plugin(self):
        nGroupNormPlugin = 0
        for node in self.graph.nodes:
            if node.op == "Reshape" and node.outputs != [] and \
                node.o().op == "ReduceMean" and node.o(1).op == "Sub" and node.o().o() == node.o(1) and \
                node.o().o().o().o().o().o().o().o().o().o().o().op == "Mul" and \
                node.o().o().o().o().o().o().o().o().o().o().o().o().op == "Add" and \
                len(node.o().o().o().o().o().o().o().o().inputs[1].values.shape) == 3:
                # "node.outputs != []" is added for VAE

                inputTensor = node.inputs[0]

                gammaNode = node.o().o().o().o().o().o().o().o().o().o().o()
                index = [type(i) == gs.ir.tensor.Constant for i in gammaNode.inputs].index(True)
                gamma = np.array(deepcopy(gammaNode.inputs[index].values.tolist()), dtype=np.float32)
                constantGamma = gs.Constant("groupNormGamma-" + str(nGroupNormPlugin), np.ascontiguousarray(gamma.reshape(-1)))  # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!!

                betaNode = gammaNode.o()
                index = [type(i) == gs.ir.tensor.Constant for i in betaNode.inputs].index(True)
                beta = np.array(deepcopy(betaNode.inputs[index].values.tolist()), dtype=np.float32)
                constantBeta = gs.Constant("groupNormBeta-" + str(nGroupNormPlugin), np.ascontiguousarray(beta.reshape(-1)))

                epsilon = node.o().o().o().o().o().inputs[1].values.tolist()[0]

                if betaNode.o().op == "Sigmoid":  # need Swish
                    bSwish = True
                    lastNode = betaNode.o().o()  # Mul node of Swish
                else:
                    bSwish = False
                    lastNode = betaNode  # Cast node after Group Norm

                if lastNode.o().op == "Cast":
                    lastNode = lastNode.o()
                inputList = [inputTensor, constantGamma, constantBeta]
                groupNormV = gs.Variable("GroupNormV-" + str(nGroupNormPlugin), np.dtype(np.float16), inputTensor.shape)
                groupNormN = gs.Node("GroupNorm", "GroupNormN-" + str(nGroupNormPlugin), inputs=inputList, outputs=[groupNormV], attrs=OrderedDict([('epsilon', epsilon), ('bSwish', int(bSwish))]))
                self.graph.nodes.append(groupNormN)

                for subNode in self.graph.nodes:
                    if lastNode.outputs[0] in subNode.inputs:
                        index = subNode.inputs.index(lastNode.outputs[0])
                        subNode.inputs[index] = groupNormV
                node.inputs = []
                lastNode.outputs = []
                nGroupNormPlugin += 1

        self.cleanup()
        return nGroupNormPlugin

    def insert_layernorm_plugin(self):
        nLayerNormPlugin = 0
        for node in self.graph.nodes:
            if node.op == 'ReduceMean' and \
                node.o().op == 'Sub' and node.o().inputs[0] == node.inputs[0] and \
                node.o().o(0).op =='Pow' and node.o().o(1).op =='Div' and \
                node.o().o(0).o().op == 'ReduceMean' and \
                node.o().o(0).o().o().op == 'Add' and \
                node.o().o(0).o().o().o().op == 'Sqrt' and \
                node.o().o(0).o().o().o().o().op == 'Div' and node.o().o(0).o().o().o().o() == node.o().o(1) and \
                node.o().o(0).o().o().o().o().o().op == 'Mul' and \
                node.o().o(0).o().o().o().o().o().o().op == 'Add' and \
                len(node.o().o(0).o().o().o().o().o().inputs[1].values.shape) == 1:

                if node.i().op == "Add":
                    inputTensor = node.inputs[0]  # CLIP
                else:
                    inputTensor = node.i().inputs[0]  # UNet and VAE

                gammaNode = node.o().o().o().o().o().o().o()
                index = [type(i) == gs.ir.tensor.Constant for i in gammaNode.inputs].index(True)
                gamma = np.array(deepcopy(gammaNode.inputs[index].values.tolist()), dtype=np.float32)
                constantGamma = gs.Constant("LayerNormGamma-" + str(nLayerNormPlugin), np.ascontiguousarray(gamma.reshape(-1)))  # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!!

                betaNode = gammaNode.o()
                index = [type(i) == gs.ir.tensor.Constant for i in betaNode.inputs].index(True)
                beta = np.array(deepcopy(betaNode.inputs[index].values.tolist()), dtype=np.float32)
                constantBeta = gs.Constant("LayerNormBeta-" + str(nLayerNormPlugin), np.ascontiguousarray(beta.reshape(-1)))

                inputList = [inputTensor, constantGamma, constantBeta]
                layerNormV = gs.Variable("LayerNormV-" + str(nLayerNormPlugin), np.dtype(np.float32), inputTensor.shape)
                layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, attrs=OrderedDict([('epsilon', 1.e-5)]), outputs=[layerNormV])
                self.graph.nodes.append(layerNormN)
                nLayerNormPlugin += 1

                if betaNode.outputs[0] in self.graph.outputs:
                    index = self.graph.outputs.index(betaNode.outputs[0])
                    self.graph.outputs[index] = layerNormV
                else:
                    if betaNode.o().op == "Cast":
                        lastNode = betaNode.o()
                    else:
                        lastNode = betaNode
                    for subNode in self.graph.nodes:
                        if lastNode.outputs[0] in subNode.inputs:
                            index = subNode.inputs.index(lastNode.outputs[0])
                            subNode.inputs[index] = layerNormV
                    lastNode.outputs = []

        self.cleanup()
        return nLayerNormPlugin

    def fuse_kv(self, node_k, node_v, fused_kv_idx, heads, num_dynamic=0):
        # Get weights of K
        weights_k = node_k.inputs[1].values
        # Get weights of V
        weights_v = node_v.inputs[1].values
        # Input number of channels to K and V
        C = weights_k.shape[0]
        # Number of heads
        H = heads
        # Dimension per head
        D = weights_k.shape[1] // H

        # Concat and interleave weights such that the output of fused KV GEMM has [b, s_kv, h, 2, d] shape
        weights_kv = np.dstack([weights_k.reshape(C, H, D), weights_v.reshape(C, H, D)]).reshape(C, 2 * H * D)

        # K and V have the same input
        input_tensor = node_k.inputs[0]
        # K and V must have the same output which we feed into fmha plugin
        output_tensor_k = node_k.outputs[0]
        # Create tensor
        constant_weights_kv = gs.Constant("Weights_KV_{}".format(fused_kv_idx), np.ascontiguousarray(weights_kv))

        # Create fused KV node
        fused_kv_node = gs.Node(op="MatMul", name="MatMul_KV_{}".format(fused_kv_idx), inputs=[input_tensor, constant_weights_kv], outputs=[output_tensor_k])
        self.graph.nodes.append(fused_kv_node)

        # Connect the output of fused node to the inputs of the nodes after K and V
        node_v.o(num_dynamic).inputs[0] = output_tensor_k
        node_k.o(num_dynamic).inputs[0] = output_tensor_k
        for i in range(0,num_dynamic):
            node_v.o().inputs.clear()
            node_k.o().inputs.clear()

        # Clear inputs and outputs of K and V to ge these nodes cleared
        node_k.outputs.clear()
        node_v.outputs.clear()
        node_k.inputs.clear()
        node_v.inputs.clear()

        self.cleanup()
        return fused_kv_node

    def insert_fmhca(self, node_q, node_kv, final_tranpose, mhca_idx, heads, num_dynamic=0):
        # Get inputs and outputs for the fMHCA plugin
        # We take an output of reshape that follows the Q GEMM
        output_q = node_q.o(num_dynamic).o().inputs[0]
        output_kv = node_kv.o().inputs[0]
        output_final_tranpose = final_tranpose.outputs[0]

        # Clear the inputs of the nodes that follow the Q and KV GEMM
        # to delete these subgraphs (it will be substituted by fMHCA plugin)
        node_kv.outputs[0].outputs[0].inputs.clear()
        node_kv.outputs[0].outputs[0].inputs.clear()
        node_q.o(num_dynamic).o().inputs.clear()
        for i in range(0,num_dynamic):
            node_q.o(i).o().o(1).inputs.clear()

        weights_kv = node_kv.inputs[1].values
        dims_per_head = weights_kv.shape[1] // (heads * 2)

        # Reshape dims
        shape = gs.Constant("Shape_KV_{}".format(mhca_idx), np.ascontiguousarray(np.array([0, 0, heads, 2, dims_per_head], dtype=np.int64)))

        # Reshape output tensor
        output_reshape = gs.Variable("ReshapeKV_{}".format(mhca_idx), np.dtype(np.float16), None)
        # Create fMHA plugin
        reshape = gs.Node(op="Reshape", name="Reshape_{}".format(mhca_idx), inputs=[output_kv, shape], outputs=[output_reshape])
        # Insert node
        self.graph.nodes.append(reshape)

        # Create fMHCA plugin
        fmhca = gs.Node(op="fMHCA", name="fMHCA_{}".format(mhca_idx), inputs=[output_q, output_reshape], outputs=[output_final_tranpose])
        # Insert node
        self.graph.nodes.append(fmhca)

        # Connect input of fMHCA to output of Q GEMM
        node_q.o(num_dynamic).outputs[0] = output_q

        if num_dynamic > 0:
            reshape2_input1_out = gs.Variable("Reshape2_fmhca{}_out".format(mhca_idx), np.dtype(np.int64), None)
            reshape2_input1_shape = gs.Node("Shape", "Reshape2_fmhca{}_shape".format(mhca_idx), inputs=[node_q.inputs[0]], outputs=[reshape2_input1_out])
            self.graph.nodes.append(reshape2_input1_shape)
            final_tranpose.o().inputs[1] = reshape2_input1_out

        # Clear outputs of transpose to get this subgraph cleared
        final_tranpose.outputs.clear()

        self.cleanup()

    def fuse_qkv(self, node_q, node_k, node_v, fused_qkv_idx, heads, num_dynamic=0):
        # Get weights of Q
        weights_q = node_q.inputs[1].values
        # Get weights of K
        weights_k = node_k.inputs[1].values
        # Get weights of V
        weights_v = node_v.inputs[1].values

        # Input number of channels to Q, K and V
        C = weights_k.shape[0]
        # Number of heads
        H = heads
        # Hidden dimension per head
        D = weights_k.shape[1] // H

        # Concat and interleave weights such that the output of fused QKV GEMM has [b, s, h, 3, d] shape
        weights_qkv = np.dstack([weights_q.reshape(C, H, D), weights_k.reshape(C, H, D), weights_v.reshape(C, H, D)]).reshape(C, 3 * H * D)

        input_tensor = node_k.inputs[0]  # K and V have the same input
        # Q, K and V must have the same output which we feed into fmha plugin
        output_tensor_k = node_k.outputs[0]
        # Concat and interleave weights such that the output of fused QKV GEMM has [b, s, h, 3, d] shape
        constant_weights_qkv = gs.Constant("Weights_QKV_{}".format(fused_qkv_idx), np.ascontiguousarray(weights_qkv))

        # Created a fused node
        fused_qkv_node = gs.Node(op="MatMul", name="MatMul_QKV_{}".format(fused_qkv_idx), inputs=[input_tensor, constant_weights_qkv], outputs=[output_tensor_k])
        self.graph.nodes.append(fused_qkv_node)

        # Connect the output of the fused node to the inputs of the nodes after Q, K and V
        node_q.o(num_dynamic).inputs[0] = output_tensor_k
        node_k.o(num_dynamic).inputs[0] = output_tensor_k
        node_v.o(num_dynamic).inputs[0] = output_tensor_k
        for i in range(0,num_dynamic):
            node_q.o().inputs.clear()
            node_k.o().inputs.clear()
            node_v.o().inputs.clear()

        # Clear inputs and outputs of Q, K and V to ge these nodes cleared
        node_q.outputs.clear()
        node_k.outputs.clear()
        node_v.outputs.clear()

        node_q.inputs.clear()
        node_k.inputs.clear()
        node_v.inputs.clear()

        self.cleanup()
        return fused_qkv_node

    def insert_fmha(self, node_qkv, final_tranpose, mha_idx, heads, num_dynamic=0):
        # Get inputs and outputs for the fMHA plugin
        output_qkv = node_qkv.o().inputs[0]
        output_final_tranpose = final_tranpose.outputs[0]

        # Clear the inputs of the nodes that follow the QKV GEMM
        # to delete these subgraphs (it will be substituted by fMHA plugin)
        node_qkv.outputs[0].outputs[2].inputs.clear()
        node_qkv.outputs[0].outputs[1].inputs.clear()
        node_qkv.outputs[0].outputs[0].inputs.clear()

        weights_qkv = node_qkv.inputs[1].values
        dims_per_head = weights_qkv.shape[1] // (heads * 3)

        # Reshape dims
        shape = gs.Constant("Shape_QKV_{}".format(mha_idx), np.ascontiguousarray(np.array([0, 0, heads, 3, dims_per_head], dtype=np.int64)))

        # Reshape output tensor
        output_shape = gs.Variable("ReshapeQKV_{}".format(mha_idx), np.dtype(np.float16), None)
        # Create fMHA plugin
        reshape = gs.Node(op="Reshape", name="Reshape_{}".format(mha_idx), inputs=[output_qkv, shape], outputs=[output_shape])
        # Insert node
        self.graph.nodes.append(reshape)

        # Create fMHA plugin
        fmha = gs.Node(op="fMHA_V2", name="fMHA_{}".format(mha_idx), inputs=[output_shape], outputs=[output_final_tranpose])
        # Insert node
        self.graph.nodes.append(fmha)

        if num_dynamic > 0:
            reshape2_input1_out = gs.Variable("Reshape2_{}_out".format(mha_idx), np.dtype(np.int64), None)
            reshape2_input1_shape = gs.Node("Shape", "Reshape2_{}_shape".format(mha_idx), inputs=[node_qkv.inputs[0]], outputs=[reshape2_input1_out])
            self.graph.nodes.append(reshape2_input1_shape)
            final_tranpose.o().inputs[1] = reshape2_input1_out

        # Clear outputs of transpose to get this subgraph cleared
        final_tranpose.outputs.clear()

        self.cleanup()

    def mha_mhca_detected(self, node, mha):
        # Go from V GEMM down to the S*V MatMul and all way up to K GEMM
        # If we are looking for MHCA inputs of two matmuls (K and V) must be equal.
        # If we are looking for MHA inputs (K and V) must be not equal.
        if node.op == "MatMul" and len(node.outputs) == 1 and \
            ((mha and len(node.inputs[0].inputs) > 0  and node.i().op == "Add") or \
            (not mha and len(node.inputs[0].inputs) == 0)):

            if node.o().op == 'Shape':
                if node.o(1).op == 'Shape':
                    num_dynamic_kv = 3 if node.o(2).op == 'Shape' else 2
                else:
                    num_dynamic_kv = 1
                # For Cross-Attention, if batch axis is dynamic (in QKV), assume H*W (in Q) is dynamic as well
                num_dynamic_q = num_dynamic_kv if mha else num_dynamic_kv + 1
            else:
                num_dynamic_kv = 0
                num_dynamic_q = 0

            o = node.o(num_dynamic_kv)
            if o.op == "Reshape" and \
                o.o().op == "Transpose" and \
                o.o().o().op == "Reshape" and \
                o.o().o().o().op == "MatMul" and \
                o.o().o().o().i(0).op == "Softmax" and \
                o.o().o().o().i(1).op == "Reshape" and \
                o.o().o().o().i(0).i().op == "Mul" and \
                o.o().o().o().i(0).i().i().op == "MatMul" and \
                o.o().o().o().i(0).i().i().i(0).op == "Reshape" and \
                o.o().o().o().i(0).i().i().i(1).op == "Transpose" and \
                o.o().o().o().i(0).i().i().i(1).i().op == "Reshape" and \
                o.o().o().o().i(0).i().i().i(1).i().i().op == "Transpose" and \
                o.o().o().o().i(0).i().i().i(1).i().i().i().op == "Reshape" and \
                o.o().o().o().i(0).i().i().i(1).i().i().i().i().op == "MatMul" and \
                node.name != o.o().o().o().i(0).i().i().i(1).i().i().i().i().name:
                # "len(node.outputs) == 1" to make sure we are not in the already fused node
                node_q = o.o().o().o().i(0).i().i().i(0).i().i().i()
                node_k = o.o().o().o().i(0).i().i().i(1).i().i().i().i()
                node_v = node
                final_tranpose = o.o().o().o().o(num_dynamic_q).o()
                # Sanity check to make sure that the graph looks like expected
                if node_q.op == "MatMul" and final_tranpose.op == "Transpose":
                    return True, num_dynamic_q, num_dynamic_kv, node_q, node_k, node_v, final_tranpose
        return False, 0, 0, None, None, None, None

    def fuse_kv_insert_fmhca(self, heads, mhca_index, sm):
        nodes = self.graph.nodes
        # Iterate over graph and search for MHCA pattern
        for idx, _ in enumerate(nodes):
            # fMHCA can't be at the 2 last layers of the network. It is a guard from OOB
            if idx + 1 > len(nodes) or idx + 2 > len(nodes):
                continue

            # Get anchor nodes for fusion and fMHCA plugin insertion if the MHCA is detected
            detected, num_dynamic_q, num_dynamic_kv, node_q, node_k, node_v, final_tranpose = \
                self.mha_mhca_detected(nodes[idx], mha=False)
            if detected:
                assert num_dynamic_q == 0 or num_dynamic_q == num_dynamic_kv + 1
                # Skip the FMHCA plugin for SM75 except for when the dim per head is 40.
                if sm == 75 and node_q.inputs[1].shape[1] // heads == 160:
                    continue
                # Fuse K and V GEMMS
                node_kv = self.fuse_kv(node_k, node_v, mhca_index, heads, num_dynamic_kv)
                # Insert fMHCA plugin
                self.insert_fmhca(node_q, node_kv, final_tranpose, mhca_index, heads, num_dynamic_q)
                return True
        return False

    def fuse_qkv_insert_fmha(self, heads, mha_index):
        nodes = self.graph.nodes
        # Iterate over graph and search for MHA pattern
        for idx, _ in enumerate(nodes):
            # fMHA can't be at the 2 last layers of the network. It is a guard from OOB
            if idx + 1 > len(nodes) or idx + 2 > len(nodes):
                continue

            # Get anchor nodes for fusion and fMHA plugin insertion if the MHA is detected
            detected, num_dynamic_q, num_dynamic_kv, node_q, node_k, node_v, final_tranpose = \
                self.mha_mhca_detected(nodes[idx], mha=True)
            if detected:
                assert num_dynamic_q == num_dynamic_kv
                # Fuse Q, K and V GEMMS
                node_qkv = self.fuse_qkv(node_q, node_k, node_v, mha_index, heads, num_dynamic_kv)
                # Insert fMHA plugin
                self.insert_fmha(node_qkv, final_tranpose, mha_index, heads, num_dynamic_kv)
                return True
        return False

    def insert_fmhca_plugin(self, num_heads, sm):
        mhca_index = 0
        while self.fuse_kv_insert_fmhca(num_heads, mhca_index, sm):
            mhca_index += 1
        return mhca_index

    def insert_fmha_plugin(self, num_heads):
        mha_index = 0
        while self.fuse_qkv_insert_fmha(num_heads, mha_index):
            mha_index += 1
        return mha_index