CU-1 / rfdetr /deploy /export.py
Matis Despujols
Upload 97 files
066effd verified
# ------------------------------------------------------------------------
# RF-DETR
# Copyright (c) 2025 Roboflow. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR)
# Copyright (c) 2024 Baidu. All Rights Reserved.
# ------------------------------------------------------------------------
"""
export ONNX model and TensorRT engine for deployment
"""
import os
import ast
import random
import argparse
import subprocess
import torch.nn as nn
from pathlib import Path
import time
from collections import defaultdict
import onnx
import torch
import onnxsim
import numpy as np
from PIL import Image
import rfdetr.util.misc as utils
import rfdetr.datasets.transforms as T
from rfdetr.models import build_model
from rfdetr.deploy._onnx import OnnxOptimizer
import re
import sys
def run_command_shell(command, dry_run:bool = False) -> int:
if dry_run:
print("")
print(f"CUDA_VISIBLE_DEVICES={os.environ['CUDA_VISIBLE_DEVICES']} {command}")
print("")
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return result
except subprocess.CalledProcessError as e:
print(f"Command failed with exit code {e.returncode}")
print(f"Error output:\n{e.stderr.decode('utf-8')}")
raise
def make_infer_image(infer_dir, shape, batch_size, device="cuda"):
if infer_dir is None:
dummy = np.random.randint(0, 256, (shape[0], shape[1], 3), dtype=np.uint8)
image = Image.fromarray(dummy, mode="RGB")
else:
image = Image.open(infer_dir).convert("RGB")
transforms = T.Compose([
T.SquareResize([shape[0]]),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
inps, _ = transforms(image, None)
inps = inps.to(device)
# inps = utils.nested_tensor_from_tensor_list([inps for _ in range(args.batch_size)])
inps = torch.stack([inps for _ in range(batch_size)])
return inps
def export_onnx(output_dir, model, input_names, input_tensors, output_names, dynamic_axes, backbone_only=False, verbose=True, opset_version=17):
export_name = "backbone_model" if backbone_only else "inference_model"
output_file = os.path.join(output_dir, f"{export_name}.onnx")
# Prepare model for export
if hasattr(model, "export"):
model.export()
torch.onnx.export(
model,
input_tensors,
output_file,
input_names=input_names,
output_names=output_names,
export_params=True,
keep_initializers_as_inputs=False,
do_constant_folding=True,
verbose=verbose,
opset_version=opset_version,
dynamic_axes=dynamic_axes)
print(f'\nSuccessfully exported ONNX model: {output_file}')
return output_file
def onnx_simplify(onnx_dir:str, input_names, input_tensors, force=False):
sim_onnx_dir = onnx_dir.replace(".onnx", ".sim.onnx")
if os.path.isfile(sim_onnx_dir) and not force:
return sim_onnx_dir
if isinstance(input_tensors, torch.Tensor):
input_tensors = [input_tensors]
print(f'start simplify ONNX model: {onnx_dir}')
opt = OnnxOptimizer(onnx_dir)
opt.info('Model: original')
opt.common_opt()
opt.info('Model: optimized')
opt.save_onnx(sim_onnx_dir)
input_dict = {name: tensor.detach().cpu().numpy() for name, tensor in zip(input_names, input_tensors)}
model_opt, check_ok = onnxsim.simplify(
onnx_dir,
check_n = 3,
input_data=input_dict,
dynamic_input_shape=False)
if check_ok:
onnx.save(model_opt, sim_onnx_dir)
else:
raise RuntimeError("Failed to simplify ONNX model.")
print(f'Successfully simplified ONNX model: {sim_onnx_dir}')
return sim_onnx_dir
def trtexec(onnx_dir:str, args) -> None:
engine_dir = onnx_dir.replace(".onnx", f".engine")
# Base trtexec command
trt_command = " ".join([
"trtexec",
f"--onnx={onnx_dir}",
f"--saveEngine={engine_dir}",
f"--memPoolSize=workspace:4096 --fp16",
f"--useCudaGraph --useSpinWait --warmUp=500 --avgRuns=1000 --duration=10",
f"{'--verbose' if args.verbose else ''}"])
if args.profile:
profile_dir = onnx_dir.replace(".onnx", f".nsys-rep")
# Wrap with nsys profile command
command = " ".join([
"nsys profile",
f"--output={profile_dir}",
"--trace=cuda,nvtx",
"--force-overwrite true",
trt_command
])
print(f'Profile data will be saved to: {profile_dir}')
else:
command = trt_command
output = run_command_shell(command, args.dry_run)
stats = parse_trtexec_output(output.stdout)
def parse_trtexec_output(output_text):
print(output_text)
# Common patterns in trtexec output
gpu_compute_pattern = r"GPU Compute Time: min = (\d+\.\d+) ms, max = (\d+\.\d+) ms, mean = (\d+\.\d+) ms, median = (\d+\.\d+) ms"
h2d_pattern = r"Host to Device Transfer Time: min = (\d+\.\d+) ms, max = (\d+\.\d+) ms, mean = (\d+\.\d+) ms"
d2h_pattern = r"Device to Host Transfer Time: min = (\d+\.\d+) ms, max = (\d+\.\d+) ms, mean = (\d+\.\d+) ms"
latency_pattern = r"Latency: min = (\d+\.\d+) ms, max = (\d+\.\d+) ms, mean = (\d+\.\d+) ms"
throughput_pattern = r"Throughput: (\d+\.\d+) qps"
stats = {}
# Extract compute times
if match := re.search(gpu_compute_pattern, output_text):
stats.update({
'compute_min_ms': float(match.group(1)),
'compute_max_ms': float(match.group(2)),
'compute_mean_ms': float(match.group(3)),
'compute_median_ms': float(match.group(4))
})
# Extract H2D times
if match := re.search(h2d_pattern, output_text):
stats.update({
'h2d_min_ms': float(match.group(1)),
'h2d_max_ms': float(match.group(2)),
'h2d_mean_ms': float(match.group(3))
})
# Extract D2H times
if match := re.search(d2h_pattern, output_text):
stats.update({
'd2h_min_ms': float(match.group(1)),
'd2h_max_ms': float(match.group(2)),
'd2h_mean_ms': float(match.group(3))
})
if match := re.search(latency_pattern, output_text):
stats.update({
'latency_min_ms': float(match.group(1)),
'latency_max_ms': float(match.group(2)),
'latency_mean_ms': float(match.group(3))
})
# Extract throughput
if match := re.search(throughput_pattern, output_text):
stats['throughput_qps'] = float(match.group(1))
return stats
def no_batch_norm(model):
for module in model.modules():
if isinstance(module, nn.BatchNorm2d):
raise ValueError("BatchNorm2d found in the model. Please remove it.")
def main(args):
print("git:\n {}\n".format(utils.get_sha()))
print(args)
# convert device to device_id
if args.device == 'cuda':
device_id = "0"
elif args.device == 'cpu':
device_id = ""
else:
device_id = str(int(args.device))
args.device = f"cuda:{device_id}"
# device for export onnx
# TODO: export onnx with cuda failed with onnx error
device = torch.device("cpu")
os.environ["CUDA_VISIBLE_DEVICES"] = device_id
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args)
n_parameters = sum(p.numel() for p in model.parameters())
print(f"number of parameters: {n_parameters}")
n_backbone_parameters = sum(p.numel() for p in model.backbone.parameters())
print(f"number of backbone parameters: {n_backbone_parameters}")
n_projector_parameters = sum(p.numel() for p in model.backbone[0].projector.parameters())
print(f"number of projector parameters: {n_projector_parameters}")
n_backbone_encoder_parameters = sum(p.numel() for p in model.backbone[0].encoder.parameters())
print(f"number of backbone encoder parameters: {n_backbone_encoder_parameters}")
n_transformer_parameters = sum(p.numel() for p in model.transformer.parameters())
print(f"number of transformer parameters: {n_transformer_parameters}")
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=True)
print(f"load checkpoints {args.resume}")
if args.layer_norm:
no_batch_norm(model)
model.to(device)
input_tensors = make_infer_image(args, device)
input_names = ['input']
output_names = ['features'] if args.backbone_only else ['dets', 'labels']
dynamic_axes = None
# Run model inference in pytorch mode
model.eval().to("cuda")
input_tensors = input_tensors.to("cuda")
with torch.no_grad():
if args.backbone_only:
features = model(input_tensors)
print(f"PyTorch inference output shape: {features.shape}")
else:
outputs = model(input_tensors)
dets = outputs['pred_boxes']
labels = outputs['pred_logits']
print(f"PyTorch inference output shapes - Boxes: {dets.shape}, Labels: {labels.shape}")
model.cpu()
input_tensors = input_tensors.cpu()
output_file = export_onnx(model, args, input_names, input_tensors, output_names, dynamic_axes)
if args.simplify:
output_file = onnx_simplify(output_file, input_names, input_tensors, args)
if args.tensorrt:
output_file = trtexec(output_file, args)