# ------------------------------------------------------------------------ # RF-DETR # Copyright (c) 2025 Roboflow. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR) # Copyright (c) 2024 Baidu. All Rights Reserved. # ------------------------------------------------------------------------ """ This tool provides performance benchmarks by using ONNX Runtime and TensorRT to run inference on a given model with the COCO validation set. It offers reliable measurements of inference latency using ONNX Runtime or TensorRT on the device. """ import argparse import copy import contextlib import datetime import json import os import os.path as osp import random import time import ast from pathlib import Path from collections import namedtuple, OrderedDict from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO import pycocotools.mask as mask_util import numpy as np from PIL import Image import torch from torch.utils.data import DataLoader, DistributedSampler import torchvision.transforms as T import torchvision.transforms.functional as F import tqdm import pycuda.driver as cuda import pycuda.autoinit import onnxruntime as nxrun import tensorrt as trt def parser_args(): parser = argparse.ArgumentParser('performance benchmark tool for onnx/trt model') parser.add_argument('--path', type=str, help='engine file path') parser.add_argument('--coco_path', type=str, default="data/coco", help='coco dataset path') parser.add_argument('--device', default=0, type=int) parser.add_argument('--run_benchmark', action='store_true', help='repeat the inference to benchmark the latency') parser.add_argument('--disable_eval', action='store_true', help='disable evaluation') return parser.parse_args() class CocoEvaluator(object): def __init__(self, coco_gt, iou_types): assert isinstance(iou_types, (list, tuple)) coco_gt = COCO(coco_gt) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) # suppress pycocotools prints with open(os.devnull, 'w') as devnull: with contextlib.redirect_stdout(devnull): coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def create_common_coco_eval(coco_eval, img_ids, eval_imgs): img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' # Running per image evaluation... p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) return p.imgIds, evalImgs def convert_to_xywh(boxes): boxes[:, 2:] -= boxes[:, :2] return boxes def get_image_list(ann_file): with open(ann_file, 'r') as fin: data = json.load(fin) return data['images'] def load_image(file_path): return Image.open(file_path).convert("RGB") class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class SquareResize(object): def __init__(self, sizes): assert isinstance(sizes, (list, tuple)) self.sizes = sizes def __call__(self, img, target=None): size = random.choice(self.sizes) rescaled_img=F.resize(img, (size, size)) w, h = rescaled_img.size if target is None: return rescaled_img, None ratios = tuple( float(s) / float(s_orig) for s, s_orig in zip(rescaled_img.size, img.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor( [ratio_width, ratio_height, ratio_width, ratio_height]) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area target["size"] = torch.tensor([h, w]) return rescaled_img, target def infer_transforms(): normalize = Compose([ ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) return Compose([ SquareResize([640]), normalize, ]) def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w.clamp(min=0.0)), (y_c - 0.5 * h.clamp(min=0.0)), (x_c + 0.5 * w.clamp(min=0.0)), (y_c + 0.5 * h.clamp(min=0.0))] return torch.stack(b, dim=-1) def post_process(outputs, target_sizes): out_logits, out_bbox = outputs['labels'], outputs['dets'] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = out_logits.sigmoid() topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 300, dim=1) scores = topk_values topk_boxes = topk_indexes // out_logits.shape[2] labels = topk_indexes % out_logits.shape[2] boxes = box_cxcywh_to_xyxy(out_bbox) boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4)) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] return results def infer_onnx(sess, coco_evaluator, time_profile, prefix, img_list, device, repeats=1): time_list = [] for img_dict in tqdm.tqdm(img_list): image = load_image(os.path.join(prefix, img_dict['file_name'])) width, height = image.size orig_target_sizes = torch.Tensor([height, width]) image_tensor, _ = infer_transforms()(image, None) # target is None samples = image_tensor[None].numpy() time_profile.reset() with time_profile: for _ in range(repeats): res = sess.run(None, {"input": samples}) time_list.append(time_profile.total / repeats) outputs = {} outputs['labels'] = torch.Tensor(res[1]).to(device) outputs['dets'] = torch.Tensor(res[0]).to(device) orig_target_sizes = torch.stack([orig_target_sizes], dim=0).to(device) results = post_process(outputs, orig_target_sizes) res = {img_dict['id']: results[0]} if coco_evaluator is not None: coco_evaluator.update(res) print("Model latency with ONNX Runtime: {}ms".format(1000 * sum(time_list) / len(img_list))) # accumulate predictions from all images stats = {} if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() coco_evaluator.accumulate() coco_evaluator.summarize() stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist() print(stats) def infer_engine(model, coco_evaluator, time_profile, prefix, img_list, device, repeats=1): time_list = [] for img_dict in tqdm.tqdm(img_list): image = load_image(os.path.join(prefix, img_dict['file_name'])) width, height = image.size orig_target_sizes = torch.Tensor([height, width]) image_tensor, _ = infer_transforms()(image, None) # target is None samples = image_tensor[None].to(device) _, _, h, w = samples.shape im_shape = torch.Tensor(np.array([h, w]).reshape((1, 2)).astype(np.float32)).to(device) scale_factor = torch.Tensor(np.array([h / height, w / width]).reshape((1, 2)).astype(np.float32)).to(device) time_profile.reset() with time_profile: for _ in range(repeats): outputs = model({"input": samples}) time_list.append(time_profile.total / repeats) orig_target_sizes = torch.stack([orig_target_sizes], dim=0).to(device) if coco_evaluator is not None: results = post_process(outputs, orig_target_sizes) res = {img_dict['id']: results[0]} coco_evaluator.update(res) print("Model latency with TensorRT: {}ms".format(1000 * sum(time_list) / len(img_list))) # accumulate predictions from all images stats = {} if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() coco_evaluator.accumulate() coco_evaluator.summarize() stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist() print(stats) class TRTInference(object): """TensorRT inference engine """ def __init__(self, engine_path='dino.engine', device='cuda:0', sync_mode:bool=False, max_batch_size=32, verbose=False): self.engine_path = engine_path self.device = device self.sync_mode = sync_mode self.max_batch_size = max_batch_size self.logger = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger(trt.Logger.INFO) self.engine = self.load_engine(engine_path) self.context = self.engine.create_execution_context() self.bindings = self.get_bindings(self.engine, self.context, self.max_batch_size, self.device) self.bindings_addr = OrderedDict((n, v.ptr) for n, v in self.bindings.items()) self.input_names = self.get_input_names() self.output_names = self.get_output_names() if not self.sync_mode: self.stream = cuda.Stream() # self.time_profile = TimeProfiler() self.time_profile = None def get_dummy_input(self, batch_size:int): blob = {} for name, binding in self.bindings.items(): if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT: print(f"make dummy input {name} with shape {binding.shape}") blob[name] = torch.rand(batch_size, *binding.shape[1:]).float().to('cuda:0') return blob def load_engine(self, path): '''load engine ''' trt.init_libnvinfer_plugins(self.logger, '') with open(path, 'rb') as f, trt.Runtime(self.logger) as runtime: return runtime.deserialize_cuda_engine(f.read()) def get_input_names(self, ): names = [] for _, name in enumerate(self.engine): if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT: names.append(name) return names def get_output_names(self, ): names = [] for _, name in enumerate(self.engine): if self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT: names.append(name) return names def get_bindings(self, engine, context, max_batch_size=32, device=None): '''build binddings ''' Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) bindings = OrderedDict() for i, name in enumerate(engine): shape = engine.get_tensor_shape(name) dtype = trt.nptype(engine.get_tensor_dtype(name)) if shape[0] == -1: raise NotImplementedError if False: if engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT: data = np.random.randn(*shape).astype(dtype) ptr = cuda.mem_alloc(data.nbytes) bindings[name] = Binding(name, dtype, shape, data, ptr) else: data = cuda.pagelocked_empty(trt.volume(shape), dtype) ptr = cuda.mem_alloc(data.nbytes) bindings[name] = Binding(name, dtype, shape, data, ptr) else: data = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) bindings[name] = Binding(name, dtype, shape, data, data.data_ptr()) return bindings def run_sync(self, blob): self.bindings_addr.update({n: blob[n].data_ptr() for n in self.input_names}) self.context.execute_v2(list(self.bindings_addr.values())) outputs = {n: self.bindings[n].data for n in self.output_names} return outputs def run_async(self, blob): self.bindings_addr.update({n: blob[n].data_ptr() for n in self.input_names}) bindings_addr = [int(v) for _, v in self.bindings_addr.items()] self.context.execute_async_v2(bindings=bindings_addr, stream_handle=self.stream.handle) outputs = {n: self.bindings[n].data for n in self.output_names} self.stream.synchronize() return outputs def __call__(self, blob): if self.sync_mode: return self.run_sync(blob) else: return self.run_async(blob) def synchronize(self, ): if not self.sync_mode and torch.cuda.is_available(): torch.cuda.synchronize() elif self.sync_mode: self.stream.synchronize() def speed(self, blob, n): self.time_profile.reset() with self.time_profile: for _ in range(n): _ = self(blob) return self.time_profile.total / n def build_engine(self, onnx_file_path, engine_file_path, max_batch_size=32): '''Takes an ONNX file and creates a TensorRT engine to run inference with http://gitlab.baidu.com/paddle-inference/benchmark/blob/main/backend_trt.py#L57 ''' EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(self.logger) as builder, \ builder.create_network(EXPLICIT_BATCH) as network, \ trt.OnnxParser(network, self.logger) as parser, \ builder.create_builder_config() as config: config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 30) # 1024 MiB config.set_flag(trt.BuilderFlag.FP16) with open(onnx_file_path, 'rb') as model: if not parser.parse(model.read()): print('ERROR: Failed to parse the ONNX file.') for error in range(parser.num_errors): print(parser.get_error(error)) return None serialized_engine = builder.build_serialized_network(network, config) with open(engine_file_path, 'wb') as f: f.write(serialized_engine) return serialized_engine class TimeProfiler(contextlib.ContextDecorator): def __init__(self, ): self.total = 0 def __enter__(self, ): self.start = self.time() return self def __exit__(self, type, value, traceback): self.total += self.time() - self.start def reset(self, ): self.total = 0 def time(self, ): if torch.cuda.is_available(): torch.cuda.synchronize() return time.perf_counter() def main(args): print(args) coco_gt = osp.join(args.coco_path, 'annotations/instances_val2017.json') img_list = get_image_list(coco_gt) prefix = osp.join(args.coco_path, 'val2017') if args.run_benchmark: repeats = 10 print('Inference for each image will be repeated 10 times to obtain ' 'a reliable measurement of inference latency.') else: repeats = 1 if args.disable_eval: coco_evaluator = None else: coco_evaluator = CocoEvaluator(coco_gt, ('bbox',)) time_profile = TimeProfiler() if args.path.endswith(".onnx"): sess = nxrun.InferenceSession(args.path, providers=['CUDAExecutionProvider']) infer_onnx(sess, coco_evaluator, time_profile, prefix, img_list, device=f'cuda:{args.device}', repeats=repeats) elif args.path.endswith(".engine"): model = TRTInference(args.path, sync_mode=True, device=f'cuda:{args.device}') infer_engine(model, coco_evaluator, time_profile, prefix, img_list, device=f'cuda:{args.device}', repeats=repeats) else: raise NotImplementedError('Only model file names ending with ".onnx" and ".engine" are supported.') if __name__ == '__main__': args = parser_args() main(args)