# ------------------------------------------------------------------------ # LW-DETR # Copyright (c) 2024 Baidu. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ """Functions to get params dict""" import torch.nn as nn from rfdetr.models.backbone import Joiner def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12): """ Calculate lr decay rate for different ViT blocks. Args: name (string): parameter name. lr_decay_rate (float): base lr decay rate. num_layers (int): number of ViT blocks. Returns: lr decay rate for the given parameter. """ layer_id = num_layers + 1 if name.startswith("backbone"): if ".pos_embed" in name or ".patch_embed" in name: layer_id = 0 elif ".blocks." in name and ".residual." not in name: layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1 print("name: {}, lr_decay: {}".format(name, lr_decay_rate ** (num_layers + 1 - layer_id))) return lr_decay_rate ** (num_layers + 1 - layer_id) def get_vit_weight_decay_rate(name, weight_decay_rate=1.0): if ('gamma' in name) or ('pos_embed' in name) or ('rel_pos' in name) or ('bias' in name) or ('norm' in name): weight_decay_rate = 0. print("name: {}, weight_decay rate: {}".format(name, weight_decay_rate)) return weight_decay_rate def get_param_dict(args, model_without_ddp: nn.Module): assert isinstance(model_without_ddp.backbone, Joiner) backbone = model_without_ddp.backbone[0] backbone_named_param_lr_pairs = backbone.get_named_param_lr_pairs(args, prefix="backbone.0") backbone_param_lr_pairs = [param_dict for _, param_dict in backbone_named_param_lr_pairs.items()] decoder_key = 'transformer.decoder' decoder_params = [ p for n, p in model_without_ddp.named_parameters() if decoder_key in n and p.requires_grad ] decoder_param_lr_pairs = [ {"params": param, "lr": args.lr * args.lr_component_decay} for param in decoder_params ] other_params = [ p for n, p in model_without_ddp.named_parameters() if ( n not in backbone_named_param_lr_pairs and decoder_key not in n and p.requires_grad) ] other_param_dicts = [ {"params": param, "lr": args.lr} for param in other_params ] final_param_dicts = ( other_param_dicts + backbone_param_lr_pairs + decoder_param_lr_pairs ) return final_param_dicts