File size: 12,868 Bytes
066effd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# ------------------------------------------------------------------------
# RF-DETR
# Copyright (c) 2025 Roboflow. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR)
# Copyright (c) 2024 Baidu. All Rights Reserved.
# ------------------------------------------------------------------------
# Conditional DETR
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copied from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------

"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable
import random

import torch
import torch.nn.functional as F

import rfdetr.util.misc as utils
from rfdetr.datasets.coco_eval import CocoEvaluator
from rfdetr.datasets.coco import compute_multi_scale_scales

try:
    from torch.amp import autocast, GradScaler
    DEPRECATED_AMP = False
except ImportError:
    from torch.cuda.amp import autocast, GradScaler
    DEPRECATED_AMP = True
from typing import DefaultDict, List, Callable
from rfdetr.util.misc import NestedTensor
import numpy as np

def get_autocast_args(args):
    if DEPRECATED_AMP:
        return {'enabled': args.amp, 'dtype': torch.bfloat16}
    else:
        return {'device_type': 'cuda', 'enabled': args.amp, 'dtype': torch.bfloat16}


def train_one_epoch(
    model: torch.nn.Module,
    criterion: torch.nn.Module,
    lr_scheduler: torch.optim.lr_scheduler.LRScheduler,
    data_loader: Iterable,
    optimizer: torch.optim.Optimizer,
    device: torch.device,
    epoch: int,
    batch_size: int,
    max_norm: float = 0,
    ema_m: torch.nn.Module = None,
    schedules: dict = {},
    num_training_steps_per_epoch=None,
    vit_encoder_num_layers=None,
    args=None,
    callbacks: DefaultDict[str, List[Callable]] = None,
):
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
    metric_logger.add_meter(
        "class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
    )
    header = "Epoch: [{}]".format(epoch)
    print_freq = 10
    start_steps = epoch * num_training_steps_per_epoch

    print("Grad accum steps: ", args.grad_accum_steps)
    print("Total batch size: ", batch_size * utils.get_world_size())

    # Add gradient scaler for AMP
    if DEPRECATED_AMP:
        scaler = GradScaler(enabled=args.amp)
    else:
        scaler = GradScaler('cuda', enabled=args.amp)

    optimizer.zero_grad()
    assert batch_size % args.grad_accum_steps == 0
    sub_batch_size = batch_size // args.grad_accum_steps
    print("LENGTH OF DATA LOADER:", len(data_loader))
    for data_iter_step, (samples, targets) in enumerate(
        metric_logger.log_every(data_loader, print_freq, header)
    ):
        it = start_steps + data_iter_step
        callback_dict = {
            "step": it,
            "model": model,
            "epoch": epoch,
        }
        for callback in callbacks["on_train_batch_start"]:
            callback(callback_dict)
        if "dp" in schedules:
            if args.distributed:
                model.module.update_drop_path(
                    schedules["dp"][it], vit_encoder_num_layers
                )
            else:
                model.update_drop_path(schedules["dp"][it], vit_encoder_num_layers)
        if "do" in schedules:
            if args.distributed:
                model.module.update_dropout(schedules["do"][it])
            else:
                model.update_dropout(schedules["do"][it])

        if args.multi_scale and not args.do_random_resize_via_padding:
            scales = compute_multi_scale_scales(args.resolution, args.expanded_scales, args.patch_size, args.num_windows)
            random.seed(it)
            scale = random.choice(scales)
            with torch.inference_mode():
                samples.tensors = F.interpolate(samples.tensors, size=scale, mode='bilinear', align_corners=False)
                samples.mask = F.interpolate(samples.mask.unsqueeze(1).float(), size=scale, mode='nearest').squeeze(1).bool()

        for i in range(args.grad_accum_steps):
            start_idx = i * sub_batch_size
            final_idx = start_idx + sub_batch_size
            new_samples_tensors = samples.tensors[start_idx:final_idx]
            new_samples = NestedTensor(new_samples_tensors, samples.mask[start_idx:final_idx])
            new_samples = new_samples.to(device)
            new_targets = [{k: v.to(device) for k, v in t.items()} for t in targets[start_idx:final_idx]]

            with autocast(**get_autocast_args(args)):
                outputs = model(new_samples, new_targets)
                loss_dict = criterion(outputs, new_targets)
                weight_dict = criterion.weight_dict
                losses = sum(
                    (1 / args.grad_accum_steps) * loss_dict[k] * weight_dict[k]
                    for k in loss_dict.keys()
                    if k in weight_dict
                )


            scaler.scale(losses).backward()

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        loss_dict_reduced_unscaled = {
            f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
        }
        loss_dict_reduced_scaled = {
            k:  v * weight_dict[k]
            for k, v in loss_dict_reduced.items()
            if k in weight_dict
        }
        losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())

        loss_value = losses_reduced_scaled.item()

        if not math.isfinite(loss_value):
            print(loss_dict_reduced)
            raise ValueError("Loss is {}, stopping training".format(loss_value))

        if max_norm > 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)

        scaler.step(optimizer)
        scaler.update()
        lr_scheduler.step()
        optimizer.zero_grad()
        if ema_m is not None:
            if epoch >= 0:
                ema_m.update(model)
        metric_logger.update(
            loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled
        )
        metric_logger.update(class_error=loss_dict_reduced["class_error"])
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


def coco_extended_metrics(coco_eval):
    """
    Safe version: ignores the –1 sentinel entries so precision/F1 never explode.
    """

    iou_thrs, rec_thrs = coco_eval.params.iouThrs, coco_eval.params.recThrs
    iou50_idx, area_idx, maxdet_idx = (
        int(np.argwhere(np.isclose(iou_thrs, 0.50))), 0, 2)

    P = coco_eval.eval["precision"]
    S = coco_eval.eval["scores"]

    prec_raw = P[iou50_idx, :, :, area_idx, maxdet_idx]

    prec = prec_raw.copy().astype(float)
    prec[prec < 0] = np.nan

    f1_cls   = 2 * prec * rec_thrs[:, None] / (prec + rec_thrs[:, None])
    f1_macro = np.nanmean(f1_cls, axis=1)

    best_j   = int(f1_macro.argmax())

    macro_precision = float(np.nanmean(prec[best_j]))
    macro_recall    = float(rec_thrs[best_j])
    macro_f1        = float(f1_macro[best_j])

    score_vec = S[iou50_idx, best_j, :, area_idx, maxdet_idx].astype(float)
    score_vec[prec_raw[best_j] < 0] = np.nan
    score_thr = float(np.nanmean(score_vec))

    map_50_95, map_50 = float(coco_eval.stats[0]), float(coco_eval.stats[1])

    per_class = []
    cat_ids = coco_eval.params.catIds
    cat_id_to_name = {c["id"]: c["name"] for c in coco_eval.cocoGt.loadCats(cat_ids)}
    for k, cid in enumerate(cat_ids):
        p_slice = P[:, :, k, area_idx, maxdet_idx]
        valid   = p_slice > -1
        ap_50_95 = float(p_slice[valid].mean()) if valid.any() else float("nan")
        ap_50    = float(p_slice[iou50_idx][p_slice[iou50_idx] > -1].mean()) if (p_slice[iou50_idx] > -1).any() else float("nan")

        pc = float(prec[best_j, k]) if prec_raw[best_j, k] > -1 else float("nan")
        rc = macro_recall

        #Doing to this to filter out dataset class
        if np.isnan(ap_50_95) or np.isnan(ap_50) or np.isnan(pc) or np.isnan(rc):
            continue

        per_class.append({
            "class"      : cat_id_to_name[int(cid)],
            "map@50:95"  : ap_50_95,
            "map@50"     : ap_50,
            "precision"  : pc,
            "recall"     : rc,
        })

    per_class.append({
        "class"     : "all",
        "map@50:95" : map_50_95,
        "map@50"    : map_50,
        "precision" : macro_precision,
        "recall"    : macro_recall,
    })

    return {
        "class_map": per_class,
        "map"      : map_50,
        "precision": macro_precision,
        "recall"   : macro_recall
    }

def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, args=None):
    model.eval()
    if args.fp16_eval:
        model.half()
    criterion.eval()

    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter(
        "class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
    )
    header = "Test:"

    iou_types = tuple(k for k in ("segm", "bbox") if k in postprocessors.keys())
    coco_evaluator = CocoEvaluator(base_ds, iou_types)

    for samples, targets in metric_logger.log_every(data_loader, 10, header):
        samples = samples.to(device)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

        if args.fp16_eval:
            samples.tensors = samples.tensors.half()

        # Add autocast for evaluation
        with autocast(**get_autocast_args(args)):
            outputs = model(samples)

        if args.fp16_eval:
            for key in outputs.keys():
                if key == "enc_outputs":
                    for sub_key in outputs[key].keys():
                        outputs[key][sub_key] = outputs[key][sub_key].float()
                elif key == "aux_outputs":
                    for idx in range(len(outputs[key])):
                        for sub_key in outputs[key][idx].keys():
                            outputs[key][idx][sub_key] = outputs[key][idx][
                                sub_key
                            ].float()
                else:
                    outputs[key] = outputs[key].float()

        loss_dict = criterion(outputs, targets)
        weight_dict = criterion.weight_dict

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        loss_dict_reduced_scaled = {
            k: v * weight_dict[k]
            for k, v in loss_dict_reduced.items()
            if k in weight_dict
        }
        loss_dict_reduced_unscaled = {
            f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
        }
        metric_logger.update(
            loss=sum(loss_dict_reduced_scaled.values()),
            **loss_dict_reduced_scaled,
            **loss_dict_reduced_unscaled,
        )
        metric_logger.update(class_error=loss_dict_reduced["class_error"])

        orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
        results = postprocessors["bbox"](outputs, orig_target_sizes)
        res = {
            target["image_id"].item(): output
            for target, output in zip(targets, results)
        }
        if coco_evaluator is not None:
            coco_evaluator.update(res)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    if coco_evaluator is not None:
        coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    if coco_evaluator is not None:
        coco_evaluator.accumulate()
        coco_evaluator.summarize()
    stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
    if coco_evaluator is not None:
        results_json = coco_extended_metrics(coco_evaluator.coco_eval["bbox"])
        stats["results_json"] = results_json
        if "bbox" in postprocessors.keys():
            stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist()

        if "segm" in postprocessors.keys():
            stats["coco_eval_masks"] = coco_evaluator.coco_eval["segm"].stats.tolist()
    return stats, coco_evaluator