Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +196 -0
- packages.txt +2 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
import librosa
|
| 5 |
+
import soundfile
|
| 6 |
+
import nemo.collections.asr as nemo_asr
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
import uuid
|
| 10 |
+
|
| 11 |
+
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
# PersistDataset -----
|
| 15 |
+
import os
|
| 16 |
+
import csv
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from gradio import inputs, outputs
|
| 19 |
+
import huggingface_hub
|
| 20 |
+
from huggingface_hub import Repository, hf_hub_download, upload_file
|
| 21 |
+
from datetime import datetime
|
| 22 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv"
|
| 23 |
+
DATASET_REPO_ID = "awacke1/Carddata.csv"
|
| 24 |
+
DATA_FILENAME = "Carddata.csv"
|
| 25 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
| 26 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 27 |
+
|
| 28 |
+
SCRIPT = """
|
| 29 |
+
<script>
|
| 30 |
+
if (!window.hasBeenRun) {
|
| 31 |
+
window.hasBeenRun = true;
|
| 32 |
+
console.log("should only happen once");
|
| 33 |
+
document.querySelector("button.submit").click();
|
| 34 |
+
}
|
| 35 |
+
</script>
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
hf_hub_download(
|
| 41 |
+
repo_id=DATASET_REPO_ID,
|
| 42 |
+
filename=DATA_FILENAME,
|
| 43 |
+
cache_dir=DATA_DIRNAME,
|
| 44 |
+
force_filename=DATA_FILENAME
|
| 45 |
+
)
|
| 46 |
+
except:
|
| 47 |
+
print("file not found")
|
| 48 |
+
repo = Repository(
|
| 49 |
+
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def generate_html() -> str:
|
| 53 |
+
with open(DATA_FILE) as csvfile:
|
| 54 |
+
reader = csv.DictReader(csvfile)
|
| 55 |
+
rows = []
|
| 56 |
+
for row in reader:
|
| 57 |
+
rows.append(row)
|
| 58 |
+
rows.reverse()
|
| 59 |
+
if len(rows) == 0:
|
| 60 |
+
return "no messages yet"
|
| 61 |
+
else:
|
| 62 |
+
html = "<div class='chatbot'>"
|
| 63 |
+
for row in rows:
|
| 64 |
+
html += "<div>"
|
| 65 |
+
html += f"<span>{row['inputs']}</span>"
|
| 66 |
+
html += f"<span class='outputs'>{row['outputs']}</span>"
|
| 67 |
+
html += "</div>"
|
| 68 |
+
html += "</div>"
|
| 69 |
+
return html
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def store_message(name: str, message: str):
|
| 73 |
+
if name and message:
|
| 74 |
+
with open(DATA_FILE, "a") as csvfile:
|
| 75 |
+
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
|
| 76 |
+
writer.writerow(
|
| 77 |
+
{"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
|
| 78 |
+
)
|
| 79 |
+
commit_url = repo.push_to_hub()
|
| 80 |
+
return ""
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
iface = gr.Interface(
|
| 84 |
+
store_message,
|
| 85 |
+
[
|
| 86 |
+
inputs.Textbox(placeholder="Your name"),
|
| 87 |
+
inputs.Textbox(placeholder="Your message", lines=2),
|
| 88 |
+
],
|
| 89 |
+
"html",
|
| 90 |
+
css="""
|
| 91 |
+
.message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; }
|
| 92 |
+
""",
|
| 93 |
+
title="Reading/writing to a HuggingFace dataset repo from Spaces",
|
| 94 |
+
description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.",
|
| 95 |
+
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
mname = "facebook/blenderbot-400M-distill"
|
| 100 |
+
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
|
| 101 |
+
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
|
| 102 |
+
|
| 103 |
+
def take_last_tokens(inputs, note_history, history):
|
| 104 |
+
"""Filter the last 128 tokens"""
|
| 105 |
+
if inputs['input_ids'].shape[1] > 128:
|
| 106 |
+
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
|
| 107 |
+
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
|
| 108 |
+
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
|
| 109 |
+
history = history[1:]
|
| 110 |
+
return inputs, note_history, history
|
| 111 |
+
|
| 112 |
+
def add_note_to_history(note, note_history):
|
| 113 |
+
"""Add a note to the historical information"""
|
| 114 |
+
note_history.append(note)
|
| 115 |
+
note_history = '</s> <s>'.join(note_history)
|
| 116 |
+
return [note_history]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def chat(message, history):
|
| 120 |
+
history = history or []
|
| 121 |
+
if history:
|
| 122 |
+
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
|
| 123 |
+
else:
|
| 124 |
+
history_useful = []
|
| 125 |
+
history_useful = add_note_to_history(message, history_useful)
|
| 126 |
+
inputs = tokenizer(history_useful, return_tensors="pt")
|
| 127 |
+
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
|
| 128 |
+
reply_ids = model.generate(**inputs)
|
| 129 |
+
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
|
| 130 |
+
history_useful = add_note_to_history(response, history_useful)
|
| 131 |
+
list_history = history_useful[0].split('</s> <s>')
|
| 132 |
+
history.append((list_history[-2], list_history[-1]))
|
| 133 |
+
store_message(message, response) # Save to dataset
|
| 134 |
+
return history, history
|
| 135 |
+
|
| 136 |
+
SAMPLE_RATE = 16000
|
| 137 |
+
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
|
| 138 |
+
model.change_decoding_strategy(None)
|
| 139 |
+
model.eval()
|
| 140 |
+
|
| 141 |
+
def process_audio_file(file):
|
| 142 |
+
data, sr = librosa.load(file)
|
| 143 |
+
if sr != SAMPLE_RATE:
|
| 144 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
| 145 |
+
# monochannel
|
| 146 |
+
data = librosa.to_mono(data)
|
| 147 |
+
return data
|
| 148 |
+
|
| 149 |
+
#def transcribe(audio, state = "", im4 = "", file = ""):
|
| 150 |
+
#def transcribe(audio, state = "", im4 = None, file = None):
|
| 151 |
+
def transcribe(audio, state = ""): # two parms - had been testing video and file inputs at same time.
|
| 152 |
+
# Grant additional context
|
| 153 |
+
# time.sleep(1)
|
| 154 |
+
if state is None:
|
| 155 |
+
state = ""
|
| 156 |
+
audio_data = process_audio_file(audio)
|
| 157 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 158 |
+
# Filepath transcribe
|
| 159 |
+
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
| 160 |
+
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
| 161 |
+
transcriptions = model.transcribe([audio_path])
|
| 162 |
+
# Direct transcribe
|
| 163 |
+
# transcriptions = model.transcribe([audio])
|
| 164 |
+
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
|
| 165 |
+
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
| 166 |
+
transcriptions = transcriptions[0]
|
| 167 |
+
transcriptions = transcriptions[0]
|
| 168 |
+
store_message(transcriptions, state) # Save to dataset
|
| 169 |
+
state = state + transcriptions + " "
|
| 170 |
+
return state, state
|
| 171 |
+
|
| 172 |
+
iface = gr.Interface(
|
| 173 |
+
fn=transcribe,
|
| 174 |
+
inputs=[
|
| 175 |
+
gr.Audio(source="microphone", type='filepath', streaming=True),
|
| 176 |
+
"state",
|
| 177 |
+
#gr.Image(label="Webcam", source="webcam"),
|
| 178 |
+
#gr.File(label="File"),
|
| 179 |
+
],
|
| 180 |
+
outputs=[
|
| 181 |
+
"textbox",
|
| 182 |
+
"state",
|
| 183 |
+
#gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}),
|
| 184 |
+
#gr.HighlightedText(label="HighlightedText", show_legend=True),
|
| 185 |
+
#gr.JSON(label="JSON"),
|
| 186 |
+
#gr.HTML(label="HTML"),
|
| 187 |
+
],
|
| 188 |
+
layout="horizontal",
|
| 189 |
+
theme="huggingface",
|
| 190 |
+
title="🗣️LiveSpeechRecognition🧠Memory💾",
|
| 191 |
+
description=f"Live Automatic Speech Recognition (ASR) with Memory💾 Dataset.",
|
| 192 |
+
allow_flagging='never',
|
| 193 |
+
live=True,
|
| 194 |
+
article=f"Result Output Saved to Memory💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
|
| 195 |
+
)
|
| 196 |
+
iface.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsndfile1
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nemo_toolkit[asr]
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
gradio
|
| 5 |
+
Werkzeug
|
| 6 |
+
huggingface_hub
|
| 7 |
+
Pillow
|