File size: 25,973 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import torch
import numpy as np
import collections
from dataclasses import dataclass
from abc import ABC, abstractmethod
import logging
import comfy.model_management
import comfy.patcher_extension
if TYPE_CHECKING:
    from comfy.model_base import BaseModel
    from comfy.model_patcher import ModelPatcher
    from comfy.controlnet import ControlBase


class ContextWindowABC(ABC):
    def __init__(self):
        ...

    @abstractmethod
    def get_tensor(self, full: torch.Tensor) -> torch.Tensor:
        """
        Get torch.Tensor applicable to current window.
        """
        raise NotImplementedError("Not implemented.")

    @abstractmethod
    def add_window(self, full: torch.Tensor, to_add: torch.Tensor) -> torch.Tensor:
        """
        Apply torch.Tensor of window to the full tensor, in place. Returns reference to updated full tensor, not a copy.
        """
        raise NotImplementedError("Not implemented.")

class ContextHandlerABC(ABC):
    def __init__(self):
        ...

    @abstractmethod
    def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
        raise NotImplementedError("Not implemented.")

    @abstractmethod
    def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: ContextWindowABC, device=None) -> list:
        raise NotImplementedError("Not implemented.")

    @abstractmethod
    def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
        raise NotImplementedError("Not implemented.")



class IndexListContextWindow(ContextWindowABC):
    def __init__(self, index_list: list[int], dim: int=0):
        self.index_list = index_list
        self.context_length = len(index_list)
        self.dim = dim

    def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
        if dim is None:
            dim = self.dim
        if dim == 0 and full.shape[dim] == 1:
            return full
        idx = [slice(None)] * dim + [self.index_list]
        return full[idx].to(device)

    def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
        if dim is None:
            dim = self.dim
        idx = [slice(None)] * dim + [self.index_list]
        full[idx] += to_add
        return full


class IndexListCallbacks:
    EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
    COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
    EXECUTE_START = "execute_start"
    EXECUTE_CLEANUP = "execute_cleanup"

    def init_callbacks(self):
        return {}


@dataclass
class ContextSchedule:
    name: str
    func: Callable

@dataclass
class ContextFuseMethod:
    name: str
    func: Callable

ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
    def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
        self.context_schedule = context_schedule
        self.fuse_method = fuse_method
        self.context_length = context_length
        self.context_overlap = context_overlap
        self.context_stride = context_stride
        self.closed_loop = closed_loop
        self.dim = dim
        self._step = 0

        self.callbacks = {}

    def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
        # for now, assume first dim is batch - should have stored on BaseModel in actual implementation
        if x_in.size(self.dim) > self.context_length:
            logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
            return True
        return False

    def prepare_control_objects(self, control: ControlBase, device=None) -> ControlBase:
        if control.previous_controlnet is not None:
            self.prepare_control_objects(control.previous_controlnet, device)
        return control

    def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: IndexListContextWindow, device=None) -> list:
        if cond_in is None:
            return None
        # reuse or resize cond items to match context requirements
        resized_cond = []
        # cond object is a list containing a dict - outer list is irrelevant, so just loop through it
        for actual_cond in cond_in:
            resized_actual_cond = actual_cond.copy()
            # now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
            for key in actual_cond:
                try:
                    cond_item = actual_cond[key]
                    if isinstance(cond_item, torch.Tensor):
                        # check that tensor is the expected length - x.size(0)
                        if self.dim < cond_item.ndim and cond_item.size(self.dim) == x_in.size(self.dim):
                            # if so, it's subsetting time - tell controls the expected indeces so they can handle them
                            actual_cond_item = window.get_tensor(cond_item)
                            resized_actual_cond[key] = actual_cond_item.to(device)
                        else:
                            resized_actual_cond[key] = cond_item.to(device)
                    # look for control
                    elif key == "control":
                        resized_actual_cond[key] = self.prepare_control_objects(cond_item, device)
                    elif isinstance(cond_item, dict):
                        new_cond_item = cond_item.copy()
                        # when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
                        for cond_key, cond_value in new_cond_item.items():
                            if isinstance(cond_value, torch.Tensor):
                                if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
                                    new_cond_item[cond_key] = window.get_tensor(cond_value, device)
                            # if has cond that is a Tensor, check if needs to be subset
                            elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
                                if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
                                    new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
                            elif cond_key == "num_video_frames": # for SVD
                                new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
                                new_cond_item[cond_key].cond = window.context_length
                        resized_actual_cond[key] = new_cond_item
                    else:
                        resized_actual_cond[key] = cond_item
                finally:
                    del cond_item  # just in case to prevent VRAM issues
            resized_cond.append(resized_actual_cond)
        return resized_cond

    def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
        mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
        matches = torch.nonzero(mask)
        if torch.numel(matches) == 0:
            raise Exception("No sample_sigmas matched current timestep; something went wrong.")
        self._step = int(matches[0].item())

    def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
        full_length = x_in.size(self.dim) # TODO: choose dim based on model
        context_windows = self.context_schedule.func(full_length, self, model_options)
        context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
        return context_windows

    def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
        self.set_step(timestep, model_options)
        context_windows = self.get_context_windows(model, x_in, model_options)
        enumerated_context_windows = list(enumerate(context_windows))

        conds_final = [torch.zeros_like(x_in) for _ in conds]
        if self.fuse_method.name == ContextFuseMethods.RELATIVE:
            counts_final = [torch.ones(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
        else:
            counts_final = [torch.zeros(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
        biases_final = [([0.0] * x_in.shape[self.dim]) for _ in conds]

        for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_START, self.callbacks):
            callback(self, model, x_in, conds, timestep, model_options)

        for enum_window in enumerated_context_windows:
            results = self.evaluate_context_windows(calc_cond_batch, model, x_in, conds, timestep, [enum_window], model_options)
            for result in results:
                self.combine_context_window_results(x_in, result.sub_conds_out, result.sub_conds, result.window, result.window_idx, len(enumerated_context_windows), timestep,
                                            conds_final, counts_final, biases_final)
        try:
            # finalize conds
            if self.fuse_method.name == ContextFuseMethods.RELATIVE:
                # relative is already normalized, so return as is
                del counts_final
                return conds_final
            else:
                # normalize conds via division by context usage counts
                for i in range(len(conds_final)):
                    conds_final[i] /= counts_final[i]
                del counts_final
                return conds_final
        finally:
            for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_CLEANUP, self.callbacks):
                callback(self, model, x_in, conds, timestep, model_options)

    def evaluate_context_windows(self, calc_cond_batch: Callable, model: BaseModel, x_in: torch.Tensor, conds, timestep: torch.Tensor, enumerated_context_windows: list[tuple[int, IndexListContextWindow]],
                                model_options, device=None, first_device=None):
        results: list[ContextResults] = []
        for window_idx, window in enumerated_context_windows:
            # allow processing to end between context window executions for faster Cancel
            comfy.model_management.throw_exception_if_processing_interrupted()

            for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EVALUATE_CONTEXT_WINDOWS, self.callbacks):
                callback(self, model, x_in, conds, timestep, model_options, window_idx, window, model_options, device, first_device)

            # update exposed params
            model_options["transformer_options"]["context_window"] = window
            # get subsections of x, timestep, conds
            sub_x = window.get_tensor(x_in, device)
            sub_timestep = window.get_tensor(timestep, device, dim=0)
            sub_conds = [self.get_resized_cond(cond, x_in, window, device) for cond in conds]

            sub_conds_out = calc_cond_batch(model, sub_conds, sub_x, sub_timestep, model_options)
            if device is not None:
                for i in range(len(sub_conds_out)):
                    sub_conds_out[i] = sub_conds_out[i].to(x_in.device)
            results.append(ContextResults(window_idx, sub_conds_out, sub_conds, window))
        return results


    def combine_context_window_results(self, x_in: torch.Tensor, sub_conds_out, sub_conds, window: IndexListContextWindow, window_idx: int, total_windows: int, timestep: torch.Tensor,
                                    conds_final: list[torch.Tensor], counts_final: list[torch.Tensor], biases_final: list[torch.Tensor]):
        if self.fuse_method.name == ContextFuseMethods.RELATIVE:
            for pos, idx in enumerate(window.index_list):
                # bias is the influence of a specific index in relation to the whole context window
                bias = 1 - abs(idx - (window.index_list[0] + window.index_list[-1]) / 2) / ((window.index_list[-1] - window.index_list[0] + 1e-2) / 2)
                bias = max(1e-2, bias)
                # take weighted average relative to total bias of current idx
                for i in range(len(sub_conds_out)):
                    bias_total = biases_final[i][idx]
                    prev_weight = (bias_total / (bias_total + bias))
                    new_weight = (bias / (bias_total + bias))
                    # account for dims of tensors
                    idx_window = [slice(None)] * self.dim + [idx]
                    pos_window = [slice(None)] * self.dim + [pos]
                    # apply new values
                    conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
                    biases_final[i][idx] = bias_total + bias
        else:
            # add conds and counts based on weights of fuse method
            weights = get_context_weights(window.context_length, x_in.shape[self.dim], window.index_list, self, sigma=timestep)
            weights_tensor = match_weights_to_dim(weights, x_in, self.dim, device=x_in.device)
            for i in range(len(sub_conds_out)):
                window.add_window(conds_final[i], sub_conds_out[i] * weights_tensor)
                window.add_window(counts_final[i], weights_tensor)

        for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.COMBINE_CONTEXT_WINDOW_RESULTS, self.callbacks):
            callback(self, x_in, sub_conds_out, sub_conds, window, window_idx, total_windows, timestep, conds_final, counts_final, biases_final)


def _prepare_sampling_wrapper(executor, model, noise_shape: torch.Tensor, *args, **kwargs):
    # limit noise_shape length to context_length for more accurate vram use estimation
    model_options = kwargs.get("model_options", None)
    if model_options is None:
        raise Exception("model_options not found in prepare_sampling_wrapper; this should never happen, something went wrong.")
    handler: IndexListContextHandler = model_options.get("context_handler", None)
    if handler is not None:
        noise_shape = list(noise_shape)
        noise_shape[handler.dim] = min(noise_shape[handler.dim], handler.context_length)
    return executor(model, noise_shape, *args, **kwargs)


def create_prepare_sampling_wrapper(model: ModelPatcher):
    model.add_wrapper_with_key(
        comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING,
        "ContextWindows_prepare_sampling",
        _prepare_sampling_wrapper
    )


def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
    total_dims = len(x_in.shape)
    weights_tensor = torch.Tensor(weights).to(device=device)
    for _ in range(dim):
        weights_tensor = weights_tensor.unsqueeze(0)
    for _ in range(total_dims - dim - 1):
        weights_tensor = weights_tensor.unsqueeze(-1)
    return weights_tensor

def get_shape_for_dim(x_in: torch.Tensor, dim: int) -> list[int]:
    total_dims = len(x_in.shape)
    shape = []
    for _ in range(dim):
        shape.append(1)
    shape.append(x_in.shape[dim])
    for _ in range(total_dims - dim - 1):
        shape.append(1)
    return shape

class ContextSchedules:
    UNIFORM_LOOPED = "looped_uniform"
    UNIFORM_STANDARD = "standard_uniform"
    STATIC_STANDARD = "standard_static"
    BATCHED = "batched"


# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
def create_windows_uniform_looped(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
    windows = []
    if num_frames < handler.context_length:
        windows.append(list(range(num_frames)))
        return windows

    context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
    # obtain uniform windows as normal, looping and all
    for context_step in 1 << np.arange(context_stride):
        pad = int(round(num_frames * ordered_halving(handler._step)))
        for j in range(
            int(ordered_halving(handler._step) * context_step) + pad,
            num_frames + pad + (0 if handler.closed_loop else -handler.context_overlap),
            (handler.context_length * context_step - handler.context_overlap),
        ):
            windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])

    return windows

def create_windows_uniform_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
    # unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
    # instead, they get shifted to the corresponding end of the frames.
    # in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
    windows = []
    if num_frames <= handler.context_length:
        windows.append(list(range(num_frames)))
        return windows

    context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
    # first, obtain uniform windows as normal, looping and all
    for context_step in 1 << np.arange(context_stride):
        pad = int(round(num_frames * ordered_halving(handler._step)))
        for j in range(
            int(ordered_halving(handler._step) * context_step) + pad,
            num_frames + pad + (-handler.context_overlap),
            (handler.context_length * context_step - handler.context_overlap),
        ):
            windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])

    # now that windows are created, shift any windows that loop, and delete duplicate windows
    delete_idxs = []
    win_i = 0
    while win_i < len(windows):
        # if window is rolls over itself, need to shift it
        is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
        if is_roll:
            roll_val = windows[win_i][roll_idx]  # roll_val might not be 0 for windows of higher strides
            shift_window_to_end(windows[win_i], num_frames=num_frames)
            # check if next window (cyclical) is missing roll_val
            if roll_val not in windows[(win_i+1) % len(windows)]:
                # need to insert new window here - just insert window starting at roll_val
                windows.insert(win_i+1, list(range(roll_val, roll_val + handler.context_length)))
        # delete window if it's not unique
        for pre_i in range(0, win_i):
            if windows[win_i] == windows[pre_i]:
                delete_idxs.append(win_i)
                break
        win_i += 1

    # reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
    delete_idxs.reverse()
    for i in delete_idxs:
        windows.pop(i)

    return windows


def create_windows_static_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
    windows = []
    if num_frames <= handler.context_length:
        windows.append(list(range(num_frames)))
        return windows
    # always return the same set of windows
    delta = handler.context_length - handler.context_overlap
    for start_idx in range(0, num_frames, delta):
        # if past the end of frames, move start_idx back to allow same context_length
        ending = start_idx + handler.context_length
        if ending >= num_frames:
            final_delta = ending - num_frames
            final_start_idx = start_idx - final_delta
            windows.append(list(range(final_start_idx, final_start_idx + handler.context_length)))
            break
        windows.append(list(range(start_idx, start_idx + handler.context_length)))
    return windows


def create_windows_batched(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
    windows = []
    if num_frames <= handler.context_length:
        windows.append(list(range(num_frames)))
        return windows
    # always return the same set of windows;
    # no overlap, just cut up based on context_length;
    # last window size will be different if num_frames % opts.context_length != 0
    for start_idx in range(0, num_frames, handler.context_length):
        windows.append(list(range(start_idx, min(start_idx + handler.context_length, num_frames))))
    return windows


def create_windows_default(num_frames: int, handler: IndexListContextHandler):
    return [list(range(num_frames))]


CONTEXT_MAPPING = {
    ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
    ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
    ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
    ContextSchedules.BATCHED: create_windows_batched,
}


def get_matching_context_schedule(context_schedule: str) -> ContextSchedule:
    func = CONTEXT_MAPPING.get(context_schedule, None)
    if func is None:
        raise ValueError(f"Unknown context_schedule '{context_schedule}'.")
    return ContextSchedule(context_schedule, func)


def get_context_weights(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, sigma: torch.Tensor=None):
    return handler.fuse_method.func(length, sigma=sigma, handler=handler, full_length=full_length, idxs=idxs)


def create_weights_flat(length: int, **kwargs) -> list[float]:
    # weight is the same for all
    return [1.0] * length

def create_weights_pyramid(length: int, **kwargs) -> list[float]:
    # weight is based on the distance away from the edge of the context window;
    # based on weighted average concept in FreeNoise paper
    if length % 2 == 0:
        max_weight = length // 2
        weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
    else:
        max_weight = (length + 1) // 2
        weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
    return weight_sequence

def create_weights_overlap_linear(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, **kwargs):
    # based on code in Kijai's WanVideoWrapper: https://github.com/kijai/ComfyUI-WanVideoWrapper/blob/dbb2523b37e4ccdf45127e5ae33e31362f755c8e/nodes.py#L1302
    # only expected overlap is given different weights
    weights_torch = torch.ones((length))
    # blend left-side on all except first window
    if min(idxs) > 0:
        ramp_up = torch.linspace(1e-37, 1, handler.context_overlap)
        weights_torch[:handler.context_overlap] = ramp_up
    # blend right-side on all except last window
    if max(idxs) < full_length-1:
        ramp_down = torch.linspace(1, 1e-37, handler.context_overlap)
        weights_torch[-handler.context_overlap:] = ramp_down
    return weights_torch

class ContextFuseMethods:
    FLAT = "flat"
    PYRAMID = "pyramid"
    RELATIVE = "relative"
    OVERLAP_LINEAR = "overlap-linear"

    LIST = [PYRAMID, FLAT, OVERLAP_LINEAR]
    LIST_STATIC = [PYRAMID, RELATIVE, FLAT, OVERLAP_LINEAR]


FUSE_MAPPING = {
    ContextFuseMethods.FLAT: create_weights_flat,
    ContextFuseMethods.PYRAMID: create_weights_pyramid,
    ContextFuseMethods.RELATIVE: create_weights_pyramid,
    ContextFuseMethods.OVERLAP_LINEAR: create_weights_overlap_linear,
}

def get_matching_fuse_method(fuse_method: str) -> ContextFuseMethod:
    func = FUSE_MAPPING.get(fuse_method, None)
    if func is None:
        raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
    return ContextFuseMethod(fuse_method, func)

# Returns fraction that has denominator that is a power of 2
def ordered_halving(val):
    # get binary value, padded with 0s for 64 bits
    bin_str = f"{val:064b}"
    # flip binary value, padding included
    bin_flip = bin_str[::-1]
    # convert binary to int
    as_int = int(bin_flip, 2)
    # divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
    # or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
    return as_int / (1 << 64)


def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
    all_indexes = list(range(num_frames))
    for w in windows:
        for val in w:
            try:
                all_indexes.remove(val)
            except ValueError:
                pass
    return all_indexes


def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
    prev_val = -1
    for i, val in enumerate(window):
        val = val % num_frames
        if val < prev_val:
            return True, i
        prev_val = val
    return False, -1


def shift_window_to_start(window: list[int], num_frames: int):
    start_val = window[0]
    for i in range(len(window)):
        # 1) subtract each element by start_val to move vals relative to the start of all frames
        # 2) add num_frames and take modulus to get adjusted vals
        window[i] = ((window[i] - start_val) + num_frames) % num_frames


def shift_window_to_end(window: list[int], num_frames: int):
    # 1) shift window to start
    shift_window_to_start(window, num_frames)
    end_val = window[-1]
    end_delta = num_frames - end_val - 1
    for i in range(len(window)):
        # 2) add end_delta to each val to slide windows to end
        window[i] = window[i] + end_delta