|
|
import logging |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
import comfy.model_management |
|
|
from .base import WeightAdapterBase, weight_decompose |
|
|
|
|
|
|
|
|
class GLoRAAdapter(WeightAdapterBase): |
|
|
name = "glora" |
|
|
|
|
|
def __init__(self, loaded_keys, weights): |
|
|
self.loaded_keys = loaded_keys |
|
|
self.weights = weights |
|
|
|
|
|
@classmethod |
|
|
def load( |
|
|
cls, |
|
|
x: str, |
|
|
lora: dict[str, torch.Tensor], |
|
|
alpha: float, |
|
|
dora_scale: torch.Tensor, |
|
|
loaded_keys: set[str] = None, |
|
|
) -> Optional["GLoRAAdapter"]: |
|
|
if loaded_keys is None: |
|
|
loaded_keys = set() |
|
|
a1_name = "{}.a1.weight".format(x) |
|
|
a2_name = "{}.a2.weight".format(x) |
|
|
b1_name = "{}.b1.weight".format(x) |
|
|
b2_name = "{}.b2.weight".format(x) |
|
|
if a1_name in lora: |
|
|
weights = (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale) |
|
|
loaded_keys.add(a1_name) |
|
|
loaded_keys.add(a2_name) |
|
|
loaded_keys.add(b1_name) |
|
|
loaded_keys.add(b2_name) |
|
|
return cls(loaded_keys, weights) |
|
|
else: |
|
|
return None |
|
|
|
|
|
def calculate_weight( |
|
|
self, |
|
|
weight, |
|
|
key, |
|
|
strength, |
|
|
strength_model, |
|
|
offset, |
|
|
function, |
|
|
intermediate_dtype=torch.float32, |
|
|
original_weight=None, |
|
|
): |
|
|
v = self.weights |
|
|
dora_scale = v[5] |
|
|
|
|
|
old_glora = False |
|
|
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]: |
|
|
rank = v[0].shape[0] |
|
|
old_glora = True |
|
|
|
|
|
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]: |
|
|
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]: |
|
|
pass |
|
|
else: |
|
|
old_glora = False |
|
|
rank = v[1].shape[0] |
|
|
|
|
|
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype) |
|
|
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype) |
|
|
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype) |
|
|
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype) |
|
|
|
|
|
if v[4] is not None: |
|
|
alpha = v[4] / rank |
|
|
else: |
|
|
alpha = 1.0 |
|
|
|
|
|
try: |
|
|
if old_glora: |
|
|
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) |
|
|
else: |
|
|
if weight.dim() > 2: |
|
|
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape) |
|
|
else: |
|
|
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape) |
|
|
lora_diff += torch.mm(b1, b2).reshape(weight.shape) |
|
|
|
|
|
if dora_scale is not None: |
|
|
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) |
|
|
else: |
|
|
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) |
|
|
except Exception as e: |
|
|
logging.error("ERROR {} {} {}".format(self.name, key, e)) |
|
|
return weight |
|
|
|