Spaces:
Build error
Build error
Updated names on buttons
Browse files
app.py
CHANGED
|
@@ -6,8 +6,6 @@ import gradio as gr
|
|
| 6 |
import spacy
|
| 7 |
nlp = spacy.load('en_core_web_sm')
|
| 8 |
|
| 9 |
-
auth_token = os.environ.get("HF_Token")
|
| 10 |
-
|
| 11 |
##Speech Recognition
|
| 12 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 13 |
def transcribe(audio):
|
|
@@ -24,10 +22,9 @@ def summarize_text(text):
|
|
| 24 |
stext = resp[0]['summary_text']
|
| 25 |
return stext
|
| 26 |
|
| 27 |
-
##Fiscal
|
| 28 |
#fin_model = pipeline("text-classification", model="demo-org/auditor_review_model",
|
| 29 |
# tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
|
| 30 |
-
#fin_model = pipeline("text-classification")
|
| 31 |
fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
| 32 |
def text_to_sentiment(text):
|
| 33 |
sentiment = fin_model(text)[0]["label"]
|
|
@@ -35,36 +32,27 @@ def text_to_sentiment(text):
|
|
| 35 |
|
| 36 |
##Company Extraction
|
| 37 |
def fin_ner(text):
|
| 38 |
-
print ("ner")
|
| 39 |
-
#ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER")
|
| 40 |
api = gr.Interface.load("dslim/bert-base-NER", src='models')
|
| 41 |
replaced_spans = api(text)
|
| 42 |
-
print (replaced_spans)
|
| 43 |
-
print ("spans2")
|
| 44 |
-
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
|
| 45 |
return replaced_spans
|
| 46 |
|
| 47 |
##Fiscal Sentiment by Sentence
|
| 48 |
def fin_ext(text):
|
| 49 |
-
print ("sent")
|
| 50 |
doc = nlp(text)
|
| 51 |
doc_sents = [sent for sent in doc.sents]
|
| 52 |
sents_list = []
|
| 53 |
for sent in doc.sents:
|
| 54 |
sents_list.append(sent.text)
|
| 55 |
results = fin_model(sents_list)
|
| 56 |
-
print (results)
|
| 57 |
results_list = []
|
| 58 |
for i in range(len(results)):
|
| 59 |
results_list.append(results[i]['label'])
|
| 60 |
fin_spans = []
|
| 61 |
fin_spans = list(zip(sents_list,results_list))
|
| 62 |
-
print (fin_spans)
|
| 63 |
return fin_spans
|
| 64 |
|
| 65 |
##Forward Looking Statement
|
| 66 |
def fls(text):
|
| 67 |
-
print ("fls")
|
| 68 |
doc = nlp(text)
|
| 69 |
doc_sents = [sent for sent in doc.sents]
|
| 70 |
sents_list = []
|
|
@@ -72,13 +60,11 @@ def fls(text):
|
|
| 72 |
sents_list.append(sent.text)
|
| 73 |
fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
|
| 74 |
results = fls_model(sents_list)
|
| 75 |
-
print (results)
|
| 76 |
results_list = []
|
| 77 |
for i in range(len(results)):
|
| 78 |
results_list.append(results[i]['label'])
|
| 79 |
fls_spans = []
|
| 80 |
fls_spans = list(zip(sents_list,results_list))
|
| 81 |
-
print (fls_spans)
|
| 82 |
return fls_spans
|
| 83 |
|
| 84 |
demo = gr.Blocks()
|
|
@@ -97,11 +83,11 @@ with demo:
|
|
| 97 |
stext = gr.Textbox()
|
| 98 |
b2.click(summarize_text, inputs=text, outputs=stext)
|
| 99 |
with gr.Row():
|
| 100 |
-
b3 = gr.Button("Classify
|
| 101 |
label = gr.Label()
|
| 102 |
b3.click(text_to_sentiment, inputs=stext, outputs=label)
|
| 103 |
with gr.Column():
|
| 104 |
-
b5 = gr.Button("
|
| 105 |
with gr.Row():
|
| 106 |
fin_spans = gr.HighlightedText()
|
| 107 |
b5.click(fin_ext, inputs=text, outputs=fin_spans)
|
|
@@ -109,7 +95,7 @@ with demo:
|
|
| 109 |
fls_spans = gr.HighlightedText()
|
| 110 |
b5.click(fls, inputs=text, outputs=fls_spans)
|
| 111 |
with gr.Row():
|
| 112 |
-
b4 = gr.Button("
|
| 113 |
replaced_spans = gr.HighlightedText()
|
| 114 |
b4.click(fin_ner, inputs=text, outputs=replaced_spans)
|
| 115 |
|
|
|
|
| 6 |
import spacy
|
| 7 |
nlp = spacy.load('en_core_web_sm')
|
| 8 |
|
|
|
|
|
|
|
| 9 |
##Speech Recognition
|
| 10 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 11 |
def transcribe(audio):
|
|
|
|
| 22 |
stext = resp[0]['summary_text']
|
| 23 |
return stext
|
| 24 |
|
| 25 |
+
##Fiscal Tone Analysis
|
| 26 |
#fin_model = pipeline("text-classification", model="demo-org/auditor_review_model",
|
| 27 |
# tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
|
|
|
|
| 28 |
fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
| 29 |
def text_to_sentiment(text):
|
| 30 |
sentiment = fin_model(text)[0]["label"]
|
|
|
|
| 32 |
|
| 33 |
##Company Extraction
|
| 34 |
def fin_ner(text):
|
|
|
|
|
|
|
| 35 |
api = gr.Interface.load("dslim/bert-base-NER", src='models')
|
| 36 |
replaced_spans = api(text)
|
|
|
|
|
|
|
|
|
|
| 37 |
return replaced_spans
|
| 38 |
|
| 39 |
##Fiscal Sentiment by Sentence
|
| 40 |
def fin_ext(text):
|
|
|
|
| 41 |
doc = nlp(text)
|
| 42 |
doc_sents = [sent for sent in doc.sents]
|
| 43 |
sents_list = []
|
| 44 |
for sent in doc.sents:
|
| 45 |
sents_list.append(sent.text)
|
| 46 |
results = fin_model(sents_list)
|
|
|
|
| 47 |
results_list = []
|
| 48 |
for i in range(len(results)):
|
| 49 |
results_list.append(results[i]['label'])
|
| 50 |
fin_spans = []
|
| 51 |
fin_spans = list(zip(sents_list,results_list))
|
|
|
|
| 52 |
return fin_spans
|
| 53 |
|
| 54 |
##Forward Looking Statement
|
| 55 |
def fls(text):
|
|
|
|
| 56 |
doc = nlp(text)
|
| 57 |
doc_sents = [sent for sent in doc.sents]
|
| 58 |
sents_list = []
|
|
|
|
| 60 |
sents_list.append(sent.text)
|
| 61 |
fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
|
| 62 |
results = fls_model(sents_list)
|
|
|
|
| 63 |
results_list = []
|
| 64 |
for i in range(len(results)):
|
| 65 |
results_list.append(results[i]['label'])
|
| 66 |
fls_spans = []
|
| 67 |
fls_spans = list(zip(sents_list,results_list))
|
|
|
|
| 68 |
return fls_spans
|
| 69 |
|
| 70 |
demo = gr.Blocks()
|
|
|
|
| 83 |
stext = gr.Textbox()
|
| 84 |
b2.click(summarize_text, inputs=text, outputs=stext)
|
| 85 |
with gr.Row():
|
| 86 |
+
b3 = gr.Button("Classify Financial Tone")
|
| 87 |
label = gr.Label()
|
| 88 |
b3.click(text_to_sentiment, inputs=stext, outputs=label)
|
| 89 |
with gr.Column():
|
| 90 |
+
b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis")
|
| 91 |
with gr.Row():
|
| 92 |
fin_spans = gr.HighlightedText()
|
| 93 |
b5.click(fin_ext, inputs=text, outputs=fin_spans)
|
|
|
|
| 95 |
fls_spans = gr.HighlightedText()
|
| 96 |
b5.click(fls, inputs=text, outputs=fls_spans)
|
| 97 |
with gr.Row():
|
| 98 |
+
b4 = gr.Button("Identify Companies & Locations")
|
| 99 |
replaced_spans = gr.HighlightedText()
|
| 100 |
b4.click(fin_ner, inputs=text, outputs=replaced_spans)
|
| 101 |
|