Spaces:
Build error
Build error
adding sentence level changes
Browse files
app.py
CHANGED
|
@@ -1,35 +1,54 @@
|
|
| 1 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
| 4 |
auth_token = os.environ.get("HF_Token")
|
| 5 |
|
|
|
|
| 6 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 7 |
-
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
| 8 |
-
tokenizer = AutoTokenizer.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
|
| 9 |
-
audit_model = AutoModelForSequenceClassification.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
|
| 10 |
-
nlp = pipeline("text-classification", model=audit_model, tokenizer=tokenizer)
|
| 11 |
-
|
| 12 |
def transcribe(audio):
|
| 13 |
text = asr(audio)["text"]
|
| 14 |
return text
|
| 15 |
-
|
| 16 |
def speech_to_text(speech):
|
| 17 |
text = asr(speech)["text"]
|
| 18 |
return text
|
| 19 |
|
|
|
|
|
|
|
| 20 |
def summarize_text(text):
|
| 21 |
stext = summarizer(text)
|
| 22 |
return stext
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def text_to_sentiment(text):
|
| 25 |
sentiment = nlp(text)[0]["label"]
|
| 26 |
return sentiment
|
| 27 |
-
|
|
|
|
| 28 |
def ner(text):
|
| 29 |
api = gr.Interface.load("dslim/bert-base-NER", src='models')
|
| 30 |
spans = api(text)
|
| 31 |
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
|
| 32 |
return spans
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
demo = gr.Blocks()
|
| 35 |
|
|
@@ -44,7 +63,7 @@ with demo:
|
|
| 44 |
stext = gr.Textbox()
|
| 45 |
b2.click(summarize_text, inputs=text, outputs=stext)
|
| 46 |
|
| 47 |
-
b3 = gr.Button("Classify Sentiment")
|
| 48 |
label = gr.Label()
|
| 49 |
b3.click(text_to_sentiment, inputs=stext, outputs=label)
|
| 50 |
|
|
@@ -52,4 +71,9 @@ with demo:
|
|
| 52 |
replaced_spans = gr.HighlightedText()
|
| 53 |
b4.click(ner, inputs=text, outputs=replaced_spans)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
demo.launch(share=True)
|
|
|
|
| 1 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
+
import spacy
|
| 5 |
+
nlp = spacy.load('en_core_web_sm')
|
| 6 |
+
|
| 7 |
auth_token = os.environ.get("HF_Token")
|
| 8 |
|
| 9 |
+
##Speech Recognition
|
| 10 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def transcribe(audio):
|
| 12 |
text = asr(audio)["text"]
|
| 13 |
return text
|
|
|
|
| 14 |
def speech_to_text(speech):
|
| 15 |
text = asr(speech)["text"]
|
| 16 |
return text
|
| 17 |
|
| 18 |
+
##Summarization
|
| 19 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
| 20 |
def summarize_text(text):
|
| 21 |
stext = summarizer(text)
|
| 22 |
return stext
|
| 23 |
|
| 24 |
+
##Fiscal Sentiment
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
|
| 26 |
+
audit_model = AutoModelForSequenceClassification.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
|
| 27 |
+
nlp = pipeline("text-classification", model=audit_model, tokenizer=tokenizer)
|
| 28 |
def text_to_sentiment(text):
|
| 29 |
sentiment = nlp(text)[0]["label"]
|
| 30 |
return sentiment
|
| 31 |
+
|
| 32 |
+
##Company Extraction
|
| 33 |
def ner(text):
|
| 34 |
api = gr.Interface.load("dslim/bert-base-NER", src='models')
|
| 35 |
spans = api(text)
|
| 36 |
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
|
| 37 |
return spans
|
| 38 |
+
|
| 39 |
+
##Fiscal Sentiment by Sentence
|
| 40 |
+
def fin_ext(text):
|
| 41 |
+
doc = nlp(text)
|
| 42 |
+
doc_sents = [sent for sent in doc.sents]
|
| 43 |
+
sents_list = []
|
| 44 |
+
for sent in doc.sents:
|
| 45 |
+
sents_list.append(sent.text)
|
| 46 |
+
results_list=[]
|
| 47 |
+
for i in range(len(results)):
|
| 48 |
+
results_list.append(results[i]['label'])
|
| 49 |
+
fin_spans = list(zip(sents_list,results_list))
|
| 50 |
+
return fin_spans
|
| 51 |
+
|
| 52 |
|
| 53 |
demo = gr.Blocks()
|
| 54 |
|
|
|
|
| 63 |
stext = gr.Textbox()
|
| 64 |
b2.click(summarize_text, inputs=text, outputs=stext)
|
| 65 |
|
| 66 |
+
b3 = gr.Button("Classify Overall Financial Sentiment")
|
| 67 |
label = gr.Label()
|
| 68 |
b3.click(text_to_sentiment, inputs=stext, outputs=label)
|
| 69 |
|
|
|
|
| 71 |
replaced_spans = gr.HighlightedText()
|
| 72 |
b4.click(ner, inputs=text, outputs=replaced_spans)
|
| 73 |
|
| 74 |
+
b5 = gr.Button("Extract Financial Sentiment")
|
| 75 |
+
replaced_spans = gr.HighlightedText()
|
| 76 |
+
b5.click(fin_ext, inputs=text, outputs=fin_spans)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
demo.launch(share=True)
|