| import spaces | |
| import json | |
| import subprocess | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| # from llama_index.core.llms import ChatMessage, MessageRole | |
| # from llama_index.llms.llama_cpp import LlamaCPP | |
| # from llama_index.llms.llama_cpp.llama_utils import ( | |
| # messages_to_prompt, | |
| # completion_to_prompt, | |
| # ) | |
| # from llama_index.core.memory import ChatMemoryBuffer | |
| subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True) | |
| subprocess.run('pip install llama-cpp-agent', shell=True) | |
| hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf", local_dir = "./models") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| from llama_cpp import Llama | |
| llm = Llama( | |
| model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf", | |
| n_gpu_layers=33, | |
| ) | |
| stream = llm.create_chat_completion( | |
| messages = [ | |
| {"role": "system", "content": f"{system_message}"}, | |
| { | |
| "role": "user", | |
| "content": f"{message}" | |
| } | |
| ], | |
| stream=True, | |
| ) | |
| outputs = "" | |
| for output in stream: | |
| print(output) | |
| if "content" in output["choices"][0]["delta"]: | |
| outputs += output["choices"][0]["delta"]["content"] | |
| yield outputs | |
| # from llama_cpp import Llama | |
| # from llama_cpp_agent import LlamaCppAgent | |
| # from llama_cpp_agent import MessagesFormatterType | |
| # from llama_cpp_agent.providers import LlamaCppPythonProvider | |
| # llama_model = Llama(r"models/mistral-7b-instruct-v0.2.Q6_K.gguf", n_batch=1024, n_threads=0, n_gpu_layers=33, n_ctx=8192, verbose=False) | |
| # provider = LlamaCppPythonProvider(llama_model) | |
| # agent = LlamaCppAgent( | |
| # provider, | |
| # system_prompt=f"{system_message}", | |
| # predefined_messages_formatter_type=MessagesFormatterType.MISTRAL, | |
| # debug_output=True | |
| # ) | |
| # settings = provider.get_provider_default_settings() | |
| # settings.stream = True | |
| # settings.max_tokens = max_tokens | |
| # settings.temperature = temperature | |
| # settings.top_p = top_p | |
| # partial_message = "" | |
| # for new_token in agent.get_chat_response(message, llm_sampling_settings=settings, returns_streaming_generator=True): | |
| # partial_message += new_token | |
| # if '<|im_end|>' in partial_message: | |
| # break | |
| # yield partial_message | |
| # stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] | |
| # chat_template = '<s>[INST] ' + system_message | |
| # # for human, assistant in history: | |
| # # chat_template += human + ' [/INST] ' + assistant + '</s>[INST]' | |
| # chat_template += ' ' + message + ' [/INST]' | |
| # print(chat_template) | |
| # llm = LlamaCPP( | |
| # model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf", | |
| # temperature=temperature, | |
| # max_new_tokens=max_tokens, | |
| # context_window=2048, | |
| # generate_kwargs={ | |
| # "top_k": 50, | |
| # "top_p": top_p, | |
| # "repeat_penalty": 1.3 | |
| # }, | |
| # model_kwargs={ | |
| # "n_threads": 0, | |
| # "n_gpu_layers": 33 | |
| # }, | |
| # messages_to_prompt=messages_to_prompt, | |
| # completion_to_prompt=completion_to_prompt, | |
| # verbose=True, | |
| # ) | |
| # # response = "" | |
| # # for chunk in llm.stream_complete(message): | |
| # # print(chunk.delta, end="", flush=True) | |
| # # response += str(chunk.delta) | |
| # # yield response | |
| # outputs = [] | |
| # for chunk in llm.stream_complete(message): | |
| # outputs.append(chunk.delta) | |
| # if chunk.delta in stop_tokens: | |
| # break | |
| # yield "".join(outputs) | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |