Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,8 @@ from llama_index.llms.llama_cpp.llama_utils import (
|
|
| 15 |
)
|
| 16 |
from llama_index.core.memory import ChatMemoryBuffer
|
| 17 |
|
| 18 |
-
subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124',
|
|
|
|
| 19 |
|
| 20 |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf", local_dir = "./models")
|
| 21 |
|
|
@@ -28,43 +29,61 @@ def respond(
|
|
| 28 |
temperature,
|
| 29 |
top_p,
|
| 30 |
):
|
| 31 |
-
|
| 32 |
-
chat_template = '<s>[INST] ' + system_message
|
| 33 |
-
# for human, assistant in history:
|
| 34 |
-
# chat_template += human + ' [/INST] ' + assistant + '</s>[INST]'
|
| 35 |
-
chat_template += ' ' + message + ' [/INST]'
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
generate_kwargs={
|
| 45 |
-
"top_k": 50,
|
| 46 |
-
"top_p": top_p,
|
| 47 |
-
"repeat_penalty": 1.3
|
| 48 |
-
},
|
| 49 |
-
model_kwargs={
|
| 50 |
-
"n_threads": 0,
|
| 51 |
-
"n_gpu_layers": 33
|
| 52 |
-
},
|
| 53 |
-
messages_to_prompt=messages_to_prompt,
|
| 54 |
-
completion_to_prompt=completion_to_prompt,
|
| 55 |
-
verbose=True,
|
| 56 |
)
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# for chunk in llm.stream_complete(message):
|
| 59 |
-
#
|
| 60 |
-
#
|
| 61 |
-
#
|
| 62 |
-
outputs
|
| 63 |
-
for chunk in llm.stream_complete(message):
|
| 64 |
-
outputs.append(chunk.delta)
|
| 65 |
-
if chunk.delta in stop_tokens:
|
| 66 |
-
break
|
| 67 |
-
yield "".join(outputs)
|
| 68 |
|
| 69 |
demo = gr.ChatInterface(
|
| 70 |
respond,
|
|
|
|
| 15 |
)
|
| 16 |
from llama_index.core.memory import ChatMemoryBuffer
|
| 17 |
|
| 18 |
+
subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
|
| 19 |
+
subprocess.run('pip install llama-cpp-agent', shell=True)
|
| 20 |
|
| 21 |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf", local_dir = "./models")
|
| 22 |
|
|
|
|
| 29 |
temperature,
|
| 30 |
top_p,
|
| 31 |
):
|
| 32 |
+
llama_model = Llama(r"models/mistral-7b-instruct-v0.2.Q6_K.gguf", n_batch=1024, n_threads=0, n_gpu_layers=33, n_ctx=8192, verbose=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
provider = LlamaCppPythonProvider(llama_model)
|
| 35 |
+
|
| 36 |
+
agent = LlamaCppAgent(
|
| 37 |
+
provider,
|
| 38 |
+
system_prompt=f"{system_message}",
|
| 39 |
+
predefined_messages_formatter_type=MessagesFormatterType.MISTRAL,
|
| 40 |
+
debug_output=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
+
|
| 43 |
+
settings = provider.get_provider_default_settings()
|
| 44 |
+
settings.stream = True
|
| 45 |
+
settings.max_tokens = max_tokens
|
| 46 |
+
settings.temperature = temperature
|
| 47 |
+
settings.top_p = top_p
|
| 48 |
+
|
| 49 |
+
yield agent.get_chat_response(message, llm_sampling_settings=settings, returns_streaming_generator=True)
|
| 50 |
+
# stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
| 51 |
+
# chat_template = '<s>[INST] ' + system_message
|
| 52 |
+
# # for human, assistant in history:
|
| 53 |
+
# # chat_template += human + ' [/INST] ' + assistant + '</s>[INST]'
|
| 54 |
+
# chat_template += ' ' + message + ' [/INST]'
|
| 55 |
+
|
| 56 |
+
# print(chat_template)
|
| 57 |
+
|
| 58 |
+
# llm = LlamaCPP(
|
| 59 |
+
# model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf",
|
| 60 |
+
# temperature=temperature,
|
| 61 |
+
# max_new_tokens=max_tokens,
|
| 62 |
+
# context_window=2048,
|
| 63 |
+
# generate_kwargs={
|
| 64 |
+
# "top_k": 50,
|
| 65 |
+
# "top_p": top_p,
|
| 66 |
+
# "repeat_penalty": 1.3
|
| 67 |
+
# },
|
| 68 |
+
# model_kwargs={
|
| 69 |
+
# "n_threads": 0,
|
| 70 |
+
# "n_gpu_layers": 33
|
| 71 |
+
# },
|
| 72 |
+
# messages_to_prompt=messages_to_prompt,
|
| 73 |
+
# completion_to_prompt=completion_to_prompt,
|
| 74 |
+
# verbose=True,
|
| 75 |
+
# )
|
| 76 |
+
# # response = ""
|
| 77 |
+
# # for chunk in llm.stream_complete(message):
|
| 78 |
+
# # print(chunk.delta, end="", flush=True)
|
| 79 |
+
# # response += str(chunk.delta)
|
| 80 |
+
# # yield response
|
| 81 |
+
# outputs = []
|
| 82 |
# for chunk in llm.stream_complete(message):
|
| 83 |
+
# outputs.append(chunk.delta)
|
| 84 |
+
# if chunk.delta in stop_tokens:
|
| 85 |
+
# break
|
| 86 |
+
# yield "".join(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
demo = gr.ChatInterface(
|
| 89 |
respond,
|